-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
404 lines (326 loc) · 14.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import os
import random
import numpy as np
from bpe.encoder import Encoder
from keras import Input
from keras.engine import Model
from keras.layers import Concatenate, Embedding, LSTM, Dense, TimeDistributed, Lambda, Multiply, \
Add, Reshape, concatenate, Dot
from tensorflow.python.client import timeline
import tensorflow as tf
PCT_TEST_DATA = 0.20
VOCAB_SIZE = 2**12
MAX_LEN_INPUT = 25
WORD_EMBED_SIZE = 100
CONTEXT_SIZE = 150
BATCH_SIZE = 32
MAX_EPOCHS = 100
LSTM_OUTPUT_DROPOUT = 0.2
LSTM_RECURRENT_DROPOUT = 0.2
DENSE_DROPOUT = 0.2
USE_GLOVE = False
USE_ATTENTION = False
META_BATCH_SIZE = 1024 * BATCH_SIZE
START = '<start/>'
END = '<end/>'
OOV = '<oov/>'
def train():
""" Train keras model and save to disk in models/latest.bin """
print("Building keras seq2seq model...")
model, run_meta = build_model()
print("Loading development data...")
develop_data = load_develop_data()
train_in, train_out, test_in, test_out = train_test_split(develop_data)
print("Selected {} training examples and {} test examples...".format(
len(train_in), len(test_in)))
print("Fitting vocab from loaded data...")
encoder = encoder_for_lines(train_in + train_out + test_in + test_out)
print("Transforming input and output data...")
train_x = encode_data(encoder, train_in, is_input=True)
train_y = encode_data(encoder, train_out, is_input=False)
test_x = encode_data(encoder, test_in, is_input=True)
test_y = encode_data(encoder, test_out, is_input=False)
encoder.mute()
print("Summary of built model:")
print(model.summary())
print("Training model...")
train_model(model, encoder, train_x, train_y, test_x, test_y)
print("Saving tensorflow profiling info at ./timeline.ctf.json...")
trace = timeline.Timeline(step_stats=run_meta.step_stats)
with open('timeline.ctf.json', 'w') as outfile:
outfile.write(trace.generate_chrome_trace_format())
model.save('latest_model.h5')
while True:
print("Reply to what?")
text = input('> ')
print(decode_input_text(model, encoder, text))
def build_model():
""" Shared embedding used by encoder and decoder input tokens. GloVe weight initialization is
optional, but it was found to not impact the results meaningfully or increase the speed of
training.
"""
# Shape of embeddings are (N, WORD_EMBED_SIZE)
shared_embedding = Embedding(
output_dim=WORD_EMBED_SIZE,
input_dim=VOCAB_SIZE,
input_length=1,
name='embedding',
)
# =============================================================================================
# ==================================== ENCODER TIME! ========================================
# =============================================================================================
# Encoder inputs - uses token IDs, which are turned into embeddings via the embedding layer
# above. Shape of encoder inputs are (MAXLEN_INPUT, )
encoder_input = Input(
shape=(MAX_LEN_INPUT,),
dtype='int32',
name='encoder_input',
batch_shape=(BATCH_SIZE, MAX_LEN_INPUT),
)
# Embedded version of the encoder input. This is all MAXLEN_INPUT tokens, and will be split
# for each "invocation" of the first encoder LSTM layer.
embedded_input = shared_embedding(encoder_input)
# Defines the encoder LSTM that is hared for each input token
encoder_lstm = LSTM(
CONTEXT_SIZE,
name='encoder_0',
dropout=LSTM_OUTPUT_DROPOUT,
recurrent_dropout=LSTM_RECURRENT_DROPOUT,
return_state=True,
stateful=True,
)
# First encoder LSTM invocation doesn't have any initial recurrent state, so it must be
# invoked once outside the loop.
current_encoder_output, *current_encoder_state = encoder_lstm(
Lambda(
lambda x: x[:, 0:1],
output_shape=(1, WORD_EMBED_SIZE)
)(embedded_input)
)
encoder_outputs = []
for input_idx in range(0, MAX_LEN_INPUT):
# We have to use a Lambda layer here to slice the (MAXLEN_INPUT, WORD_EMBED_SIZE)-shaped
# input tensor into (1, WORD_EMBED_SIZE)-shaped tensors for each LSTM invocation. We have
# to tell Keras the shape of the result, since it can't be inferred from the lambda inside.
encoder_input_slice = \
Lambda(
lambda x: x[:, input_idx:input_idx+1],
output_shape=(1, WORD_EMBED_SIZE),
)(embedded_input)
current_encoder_output, *current_encoder_state = encoder_lstm(
encoder_input_slice,
current_encoder_state,
)
encoder_outputs.append(current_encoder_output)
# At this point, our encoder is complete. The `current_encoder_state` is two tensors that
# represent the LSTM state after the last token has been fed in, which we need to intiialize
# the decoder with.
# If we were going to add attention, we would build a list of `current_encoder_out` for each
# encoder step, and make an attention unit for each decoder LSTM input based on all encoder
# outputs (not states) and the previous decoder state. For this implementation, they are
# not used, since the context vector is passed as the LSTM state.
# =============================================================================================
# ==================================== DECODER TIME! ========================================
# =============================================================================================
# Input for the decoder, essentially the same as the encoder input above. In training, the
# whole decoder token string is fed. For test decoding of strings, zeros are fed for future
# tokens, and the model is re-evaluated for each token to be generated. In real applications,
# you'd want to re-wire the network so that each LSTM output took the result of the prior
# invocation of the LSTM.
# Inputs, embedding, and decoder LSTM creation are unchanged from the encoder stage.
decoder_inputs = Input(
shape=(MAX_LEN_INPUT,),
dtype='int32',
name='decoder_inputs_0',
batch_shape=(BATCH_SIZE, MAX_LEN_INPUT),
)
embedded_decoder_input = shared_embedding(decoder_inputs)
decoder_lstm = LSTM(
CONTEXT_SIZE,
name='decoder_0',
dropout=LSTM_OUTPUT_DROPOUT,
recurrent_dropout=LSTM_RECURRENT_DROPOUT,
return_state=True,
stateful=True,
)
# Set initial decoder state from encoder, and prepare to aggregate decoder LSTM outputs.
# These decoder outputs will be put through a dense softmax layer for sampling into tokens.
current_decoder_state = current_encoder_state
decoder_outputs = []
attn_dot = Dot(axes=(2, 1), normalize=True)
attn_cat = Concatenate(axis=1, input_shape=(1,), name='attn_cat')
attn_softmax = Dense(MAX_LEN_INPUT, input_shape=(MAX_LEN_INPUT,), activation='softmax',
name='attn_softmax')
attn_multiply = Multiply(name='attn_multiply')
attn_sum = Add(input_shape=(CONTEXT_SIZE, ), name='attn_sum')
def attend_to(decoder_state):
# Dot product result shape: (BATCH_SIZE, 1) per decoder input
_dots = [
attn_dot([
Reshape((1, CONTEXT_SIZE))(decoder_state),
Reshape((CONTEXT_SIZE, 1))(encoder_outputs[idx]),
])
for idx in range(MAX_LEN_INPUT)
]
# Concatenation for the attention softmax, new shape (BATCH_SIZE, MAXLEN_INPUT)
_cat = Reshape((MAX_LEN_INPUT,))(attn_cat(_dots))
_softmax = attn_softmax(_cat)
# Softmax provides weights per encoder output, need to split with lambda
_multiplies = [
attn_multiply([
encoder_outputs[idx],
Lambda(
lambda x: x[:, idx:idx+1],
output_shape=(MAX_LEN_INPUT, CONTEXT_SIZE),
)(_softmax)
])
for idx in range(MAX_LEN_INPUT)
]
_sum = attn_sum(_multiplies)
# Lambda required here to show Keras the result layer shape
return Lambda(
lambda x: x,
output_shape=(1, CONTEXT_SIZE),
)(_sum)
for decoder_idx in range(0, MAX_LEN_INPUT):
# Same slicing of inputs and passing of last decoder state into next decoder invoation that
# we saw in the endocer above. If attention was added, it would be concatenated with the
# decoder input here.
decoder_input_slice = \
Lambda(
lambda x: x[:, decoder_idx],
output_shape=(1, WORD_EMBED_SIZE),
)(embedded_decoder_input)
if USE_ATTENTION:
decoder_input_size = (CONTEXT_SIZE + WORD_EMBED_SIZE, 1)
decoder_input = concatenate([
decoder_input_slice,
attend_to(current_decoder_state[0])
])
else:
decoder_input_size = (WORD_EMBED_SIZE, 1)
decoder_input = decoder_input_slice
current_decoder_output, *current_decoder_state = \
decoder_lstm(
Reshape(decoder_input_size)(decoder_input),
current_decoder_state,
)
# Aggregate decoder outputs for merging.
decoder_outputs.append(current_decoder_output)
# Reshape is required here to turn concated array from (None, MAXLEN_INPUT * CONTEXT_SIZE) into
# shape of (None, MAXLEN_INPUT, CONTEXT_SIZE) for the time-distributed dense layer below. This
# allows the dense embedding-to-sampled-token layer to be shared for each output token.
decoder_outputs = Reshape(
(MAX_LEN_INPUT, CONTEXT_SIZE)
)(concatenate(decoder_outputs, axis=1))
# Dense layer transforming decoder output into a softmax word-distribution.
word_dists = \
TimeDistributed(
Dense(
VOCAB_SIZE,
activation='softmax',
name='word_dist',
)
)(decoder_outputs)
model = Model(inputs=[encoder_input, decoder_inputs], outputs=word_dists)
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', options=run_options,
run_metadata=run_metadata)
return model, run_metadata
def train_model_epoch(model, train_x, train_y, test_x, test_y, n, start_idx):
# Prepend <START> to training responses
answers_in_train = np.hstack([
np.ones((len(train_x), 1), dtype='int32') * start_idx,
train_y[:, :-1]
])
# We have to add an extra dimension for Keras' sparse_categorical_crossentropy
answers_out_train = train_y.reshape((len(train_x), MAX_LEN_INPUT, 1))
answers_in_test = np.hstack([
np.ones((len(test_x), 1), dtype='int32') * start_idx,
test_y[:, :-1]
])
answers_out_test = test_y.reshape((len(test_x), MAX_LEN_INPUT, 1))
model.fit(
x=[train_x[:n], answers_in_train[:n]],
y=answers_out_train[:n],
epochs=1,
batch_size=BATCH_SIZE,
)
# Need to ensure our datasize for testing is evenly divisible by batch size. This is
# done by default for training size, but test size is smaller, so it must be done
# again.
test_n = BATCH_SIZE * int(min([len(test_x), n]) / BATCH_SIZE)
score = model.evaluate(
x=[test_x[:test_n], answers_in_test[:test_n]],
y=(answers_out_test[:test_n]),
batch_size=BATCH_SIZE,
)
print('\nValidation score:', score)
def train_model(model, encoder, train_x, train_y, test_x, test_y):
start_idx = encoder.word_vocab[START]
test_input = [
"__romance When did you start drinking again?",
"__crime So you're from around here?",
"__thriller Oh god, what do we do?",
"__romance Do you love me?",
]
try:
for epoch in range(MAX_EPOCHS):
print("Training epoch {}".format(epoch))
n = META_BATCH_SIZE
print("Evaluating test examples...")
for text in test_input:
print('> ', text)
print(decode_input_text(model, encoder, text))
train_model_epoch(model, train_x, train_y, test_x, test_y, n, start_idx)
except KeyboardInterrupt:
print("Caught keyboard interrupt, halting training...")
return model
def decode_input_text(model, encoder, text):
""" Horrible hack of a function to test responses to arbitrary strings. Don't try this at home,
kids.
"""
result_tokens = [encoder.word_vocab[START]]
for i in range(MAX_LEN_INPUT):
answer_vec = (result_tokens +
[encoder.bpe_vocab[encoder.PAD]] * MAX_LEN_INPUT)[:MAX_LEN_INPUT]
input_vec = [encode_data(encoder, [text], is_input=True),
np.array(answer_vec).reshape((1, MAX_LEN_INPUT))]
prediction = model.predict([np.vstack([vec]*BATCH_SIZE)
for vec in input_vec])[0].reshape(MAX_LEN_INPUT, VOCAB_SIZE)
tokens = list(prediction.argmax(axis=1))
result_tokens.append(tokens[i])
return list(encoder.inverse_transform([result_tokens]))
def train_test_split(develop_data):
test_movie_ids = set(random.sample(develop_data.keys(), int(len(develop_data)*PCT_TEST_DATA)))
train_in, train_out = [], []
test_in, test_out = [], []
for movie_id, (input_data, output_data) in develop_data.items():
if movie_id in test_movie_ids:
test_in.extend(input_data)
test_out.extend(output_data)
else:
train_in.extend(input_data)
train_out.extend(output_data)
return train_in, train_out, test_in, test_out
def load_develop_data(path='data/develop/'):
fnames = [fname for fname in os.listdir(path) if fname.startswith('m')]
movie_ids = set(fname.split('_')[0] for fname in fnames)
def read_movie(movie_id):
with open('{}/{}_in.txt'.format(path.rstrip('/'), movie_id), 'rb') as infile:
in_lines = [line.decode('utf-8', 'ignore').strip() for line in infile]
with open('{}/{}_out.txt'.format(path.rstrip('/'), movie_id), 'rb') as infile:
out_lines = [line.decode('utf-8', 'ignore').strip() for line in infile]
return in_lines, out_lines
return {movie_id: read_movie(movie_id) for movie_id in movie_ids}
def encode_data(encoder, text, is_input=False):
""" Encode data using provided encoder, for use in training/testing """
return np.array(list(encoder.transform(text, reverse=is_input, fixed_length=MAX_LEN_INPUT)),
dtype='int32')
def encoder_for_lines(lines):
""" Calculate BPE encoder for provided lines of text """
encoder = Encoder(vocab_size=VOCAB_SIZE, required_tokens=[START])
encoder.fit(lines)
encoder.save('latest_encoder.json')
return encoder