-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcli.py
144 lines (119 loc) · 7.01 KB
/
cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import sys
import math
import random
import argparse
import itertools
import numpy as np
from random import sample
from core import StatusUpdateAnalyzer, START_BATCH_SIZE
from core.data_provider import get_status_updates
from core.evaluation import calculate_metrics, write_evaluation_results
from core.utils import random_insert_seq, split_by_author
from core.utils.classifier_optimizer import ClassifierOptimizer
from crawler import crawl_status_updates
def crawl_cli(argv):
# Create argument parser
parser = argparse.ArgumentParser(description="This application crawls tweets from the most popular twitter users and stores them on disk.")
parser.add_argument("--output-path", "-o",
help="The output path of the crawled dataset.")
parser.add_argument("--user-limit", type=int, default=100,
help="The maximum number of accounts to crawl.")
parser.add_argument("--limit", type=int, default=0,
help="The maximum number of tweets per account to crawl.")
args = parser.parse_args(argv)
# Extract arguments and start crawling
crawl_status_updates('twitter', args.output_path,
user_limit=args.user_limit, limit=args.limit)
def tune_cli(argv):
# Create argument parser
parser = argparse.ArgumentParser(description="This application determines the best suited hyper-parameter combinations for a certain classifier based on a given data set.")
parser.add_argument("--data-source", "-s",
help="The data source that should be used for classifier analysis. Possible values are 'fth', 'mp' and 'twitter'.")
parser.add_argument("--dataset-path", "-p",
help="The path of the dataset that should be used for classifier analysis.")
parser.add_argument("--classifier", "-c",
help="The classifier to be analyzed. Possible values are 'decision_tree' and 'perceptron'.")
args = parser.parse_args(argv)
# Get status updates
print("Retrieving status updates...")
status_updates = get_status_updates(args.data_source,
dataset_path=args.dataset_path)
status_updates = sorted(status_updates, key=lambda x: x.author)
grouped_status_updates = [list(g) for k, g in itertools.groupby(status_updates, lambda x: x.author)]
n = 500
ClassifierOptimizer(args.classifier, grouped_status_updates[0][:n], grouped_status_updates[1][:n]).execute()
def evaluate_cli(argv):
# Create argument parser
parser = argparse.ArgumentParser(description="This application evaluates the anomaly detection approach.")
parser.add_argument("--data-source", "-s",
help="The data source that should be used for cross-validation. Possible values are 'fth', 'mp' and 'twitter'.")
parser.add_argument("--dataset-path", "-p",
help="The path of the dataset that should be used for cross-validation.")
parser.add_argument("--classifier", "-c",
help="The classifier to be trained. Possible values are 'decision_tree', 'one_class_svm', 'isolation_forest' and 'perceptron'.")
parser.add_argument("--evaluation-rounds", type=int, default=10,
help="Number of rounds the evaluation is executed. Reduces the variation caused by sampling.")
parser.add_argument("--no-scaling", dest='scale_features', action='store_false',
help="Disables feature scaling.")
parser.add_argument("--output-path", "-o", default="evaluation.xlsx",
help="The path of the file the results should be written to.")
args = parser.parse_args(argv)
# Get status updates
print("Retrieving status updates...")
status_updates = get_status_updates(args.data_source,
dataset_path=args.dataset_path)
status_updates = sorted(status_updates, key=lambda x: x.author)
grouped_status_updates = [list(g) for k, g in itertools.groupby(status_updates, lambda x: x.author)]
n_user = 500
evaluation_data = []
for r in range(args.evaluation_rounds):
round_data = {}
for i in range(len(grouped_status_updates)):
user = grouped_status_updates[i][0].author
user_status_updates = grouped_status_updates[i][:n_user]
ext_status_updates = list(itertools.chain(*[x for j, x in enumerate(grouped_status_updates) if j != i]))
print("Round %s/%s: Analyzing @%s (%s/%s)" % (r + 1, args.evaluation_rounds, user, i + 1, len(grouped_status_updates)))
# Adapt number of likes and shares of half of external status updates
for j in np.random.choice(len(ext_status_updates), int(math.ceil(len(ext_status_updates) / 2)), replace=False):
random_status_update = random.choice(grouped_status_updates[i])
ext_status_updates[j]._number_of_likes = random_status_update.number_of_likes
ext_status_updates[j]._number_of_shares = random_status_update.number_of_shares
# Construct test & training sets
ext_training_status_updates, ext_testing_status_updates = split_by_author(ext_status_updates, [user])
if len(ext_training_status_updates) > len(user_status_updates):
ext_training_status_updates = sample(ext_training_status_updates, len(user_status_updates))
# Add some status updates from other users
safe_user_status_updates = user_status_updates[:START_BATCH_SIZE]
mixed_user_status_updates, ext_testing_status_updates = random_insert_seq(user_status_updates[START_BATCH_SIZE:],
ext_testing_status_updates)
# Run classifier
analyzer = StatusUpdateAnalyzer(safe_user_status_updates + mixed_user_status_updates,
ext_training_status_updates,
args.classifier, args.scale_features)
analyzer.analyze()
# Evaluation metrics
metrics = calculate_metrics(user_status_updates[START_BATCH_SIZE:],
ext_testing_status_updates,
analyzer.suspicious_statuses)
round_data[user] = metrics
tp, tn, fp, fn, prec, rec, fm, acc = metrics
print("TP: %i, TN: %i, FP: %i, FN: %i" % (tp, tn, fp, fn))
print("Prec: %.2f, Rec: %.2f, F: %.2f, Acc: %.2f" % (prec, rec, fm, acc))
print()
evaluation_data.append(round_data)
write_evaluation_results(evaluation_data, args.output_path)
if __name__ == "__main__":
# Split arguments
if len(sys.argv) <= 1:
sys.exit("No action provided!")
action = sys.argv[1]
argv = sys.argv[2:]
# Call sub CLI
if action == "crawl":
crawl_cli(argv)
elif action == "tune":
tune_cli(argv)
elif action == "evaluate":
evaluate_cli(argv)
else:
sys.exit("Invalid action!")