-
Notifications
You must be signed in to change notification settings - Fork 44
/
aes.c
519 lines (474 loc) · 14.8 KB
/
aes.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
/** \file aes.c
*
* \brief A byte-oriented AES (Rijndael) implementation.
*
* The emphasis is on having small code size. As a result, performance (time
* taken per byte encrypted or decrypted) may not be very good.
* This implementation is for 128 bit keys (10 rounds). At the moment the
* number of rounds and key size are hardcoded. The block size is also fixed
* at 128 bits.
*
* This is based on "aestable.c", by Karl Malbrain ([email protected]).
* Significant changes from original:
* - Reduced the number of lookup tables
* - Rolled up loops in [Inv]ShiftRows() and [Inv]MixSubColumns()
* - Combined ShiftRows() and InvShiftRows() into one function
*
* This file is licensed as described by the file LICENCE.
*/
#ifdef TEST_AES
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "test_helpers.h"
#endif // #ifdef TEST_AES
#include "common.h"
#include "aes.h"
/** Forward S-box for Rijndael. */
static const uint8_t sbox[256] PROGMEM = {
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16};
/** Inverse S-box for Rijndael. */
static const uint8_t inv_sbox[256] PROGMEM = {
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d};
/** Multiply x by 2 under the field GF(2 ^ 8) with the reducing polynomial
* x ^ 8 + x ^ 4 + x ^ 3 + x + 1. */
static uint8_t xTimes2InGF(uint8_t x)
{
// ((unsigned int)(-(int)(x >> 7)) & 0x1b) is equivalent to
// (x & 0x80 ? 0x1b : 0) but is more timing attack resistant.
return (uint8_t)(((unsigned int)(-(int)(x >> 7)) & 0x1b) ^ (unsigned int)(x + x));
}
/** Multiply x by 3 under the field GF(2 ^ 8) with the reducing polynomial
* x ^ 8 + x ^ 4 + x ^ 3 + x + 1. */
static uint8_t xTimes3InGF(uint8_t x)
{
return (uint8_t)(xTimes2InGF(x) ^ x);
}
/** Multiply x by 4 under the field GF(2 ^ 8) with the reducing polynomial
* x ^ 8 + x ^ 4 + x ^ 3 + x + 1. */
static uint8_t xTimes4InGF(uint8_t x)
{
return xTimes2InGF(xTimes2InGF(x));
}
/** Multiply x by 8 under the field GF(2 ^ 8) with the reducing polynomial
* x ^ 8 + x ^ 4 + x ^ 3 + x + 1. */
static uint8_t xTimes8InGF(uint8_t x)
{
return xTimes2InGF(xTimes4InGF(x));
}
/** Multiply x by 9 under the field GF(2 ^ 8) with the reducing polynomial
* x ^ 8 + x ^ 4 + x ^ 3 + x + 1. */
static uint8_t xTimes9InGF(uint8_t x)
{
return (uint8_t)(xTimes8InGF(x) ^ x);
}
/** Multiply x by 11 under the field GF(2 ^ 8) with the reducing polynomial
* x ^ 8 + x ^ 4 + x ^ 3 + x + 1. */
static uint8_t xTimesBInGF(uint8_t x)
{
return (uint8_t)(xTimes9InGF(x) ^ xTimes2InGF(x));
}
/** Multiply x by 13 under the field GF(2 ^ 8) with the reducing polynomial
* x ^ 8 + x ^ 4 + x ^ 3 + x + 1. */
static uint8_t xTimesDInGF(uint8_t x)
{
// Note that x * 13 is not the same as x * 11 + x * 2 under GF(2 ^ 8).
return (uint8_t)(xTimes9InGF(x) ^ xTimes4InGF(x));
}
/** Multiply x by 14 under the field GF(2 ^ 8) with the reducing polynomial
* x ^ 8 + x ^ 4 + x ^ 3 + x + 1. */
static uint8_t xTimesEInGF(uint8_t x)
{
return (uint8_t)(xTimes8InGF(x) ^ xTimes4InGF(x) ^ xTimes2InGF(x));
}
/** Exchanges (or restores) columns in each of 4 rows.
* To exchange, use 5 for shift_or_inv. To restore, use 13 for shift_or_inv.
* Why 5 and 13? 5 = 1 + 4 (mod 16), and 13 = 1 - 4 (mod 16). shift_or_inv
* controls how much rows are shifted.
* - row0 is unchanged
* - row1 is shifted left (or right) 1 column
* - row2 is shifted left (or right) 2 column
* - row3 is shifted left (or right) 3 column
*/
static void shiftOrInvShiftRows(uint8_t *state, uint8_t shift_or_inv)
{
uint8_t tmp[16];
uint8_t i, j;
uint8_t o1, o2;
o1 = 0;
o2 = 0;
for (i = 0; i < 4; i++)
{
for (j = 0; j < 4; j++)
{
if (shift_or_inv == 5)
{
tmp[o1] = LOOKUP_BYTE(sbox[state[o2]]);
}
else
{
tmp[o1] = LOOKUP_BYTE(inv_sbox[state[o2]]);
}
o1 = (uint8_t)((o1 + 4) & 15);
o2 = (uint8_t)((o2 + 4) & 15);
}
o1 = (uint8_t)((o1 + 1) & 15);
o2 = (uint8_t)((o2 + shift_or_inv) & 15);
}
memcpy(state, tmp, 16);
}
/** Recombine and mix each row in a column. */
static void mixSubColumns(uint8_t *state)
{
uint8_t tmp[16];
uint8_t i;
uint8_t o1, o2, o3, o4, otemp;
o1 = 0;
o2 = 5;
o3 = 10;
o4 = 15;
for (i = 0; i < 16; i++)
{
tmp[i] = (uint8_t)(
xTimes2InGF(LOOKUP_BYTE(sbox[state[o1]]))
^ xTimes3InGF(LOOKUP_BYTE(sbox[state[o2]]))
^ LOOKUP_BYTE(sbox[state[o3]])
^ LOOKUP_BYTE(sbox[state[o4]]));
otemp = o1;
o1 = o2;
o2 = o3;
o3 = o4;
o4 = otemp;
if ((i & 3) == 3)
{
o1 = (uint8_t)((o1 + 4) & 15);
o2 = (uint8_t)((o2 + 4) & 15);
o3 = (uint8_t)((o3 + 4) & 15);
o4 = (uint8_t)((o4 + 4) & 15);
}
}
memcpy(state, tmp, 16);
}
/** Restore and un-mix each row in a column. */
static void invMixSubColumns(uint8_t *state)
{
uint8_t tmp[16];
uint8_t i;
uint8_t idx;
uint8_t o1, o2, o3, o4, otemp;
o1 = 0;
o2 = 1;
o3 = 2;
o4 = 3;
idx = 0;
for (i = 0; i < 16; i++)
{
tmp[idx] = (uint8_t)(
xTimesEInGF(state[o1])
^ xTimesBInGF(state[o2])
^ xTimesDInGF(state[o3])
^ xTimes9InGF(state[o4]));
idx = (uint8_t)((idx + 5) & 15);
otemp = o1;
o1 = o2;
o2 = o3;
o3 = o4;
o4 = otemp;
if ((i & 3) == 3)
{
o1 = (uint8_t)((o1 + 4) & 15);
o2 = (uint8_t)((o2 + 4) & 15);
o3 = (uint8_t)((o3 + 4) & 15);
o4 = (uint8_t)((o4 + 4) & 15);
}
}
for (i = 0; i < 16; i++)
{
state[i] = LOOKUP_BYTE(inv_sbox[tmp[i]]);
}
}
/** XOR (r = r XOR op1) 16 bytes with another 16 bytes.
* \param r One operand for the XOR operation. The result will also be
* written here.
* \param op1 The other operand for the XOR operation.
*/
void xor16Bytes(uint8_t *r, uint8_t *op1)
{
uint8_t i;
for (i = 0; i < 16; i++)
{
r[i] ^= op1[i];
}
}
/** Round constants; 0 followed by 2 ^ i under the field GF(2 ^ 8) with the
* reducing polynomial x ^ 8 + x ^ 4 + x ^ 3 + x + 1. */
static const uint8_t r_con[11] = {
0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36};
/** Expand the key by 16 bytes for each round. This must be called once (but
* it only needs to be called only once) per key before encryption or
* decryption, since encryption and decryption use the expanded key.
* \param expanded_key Buffer of size #EXPANDED_KEY_SIZE bytes to store
* expanded key.
* \param key 16 byte input key.
*/
void aesExpandKey(uint8_t *expanded_key, uint8_t *key)
{
uint8_t tmp0, tmp1, tmp2, tmp3, tmp4;
uint8_t idx;
memcpy(expanded_key, key, 16);
for (idx = 16; idx < 176; idx = (uint8_t)(idx + 4))
{
tmp0 = expanded_key[idx - 4];
tmp1 = expanded_key[idx - 3];
tmp2 = expanded_key[idx - 2];
tmp3 = expanded_key[idx - 1];
if ((idx & 15) == 0)
{
tmp4 = tmp3;
tmp3 = LOOKUP_BYTE(sbox[tmp0]);
tmp0 = (uint8_t)(LOOKUP_BYTE(sbox[tmp1]) ^ r_con[idx >> 4]);
tmp1 = LOOKUP_BYTE(sbox[tmp2]);
tmp2 = LOOKUP_BYTE(sbox[tmp4]);
}
expanded_key[idx + 0] = (uint8_t)(expanded_key[idx - 16 + 0] ^ tmp0);
expanded_key[idx + 1] = (uint8_t)(expanded_key[idx - 16 + 1] ^ tmp1);
expanded_key[idx + 2] = (uint8_t)(expanded_key[idx - 16 + 2] ^ tmp2);
expanded_key[idx + 3] = (uint8_t)(expanded_key[idx - 16 + 3] ^ tmp3);
}
}
/** Encrypt one 128 bit block.
* \param out The resulting ciphertext will be placed here. This should be a
* 16 byte array.
* \param in The plaintext to encrypt. This should also be a 16 byte array.
* \param expanded_key Should point to an array containing the expanded
* key (see aesExpandKey()).
*/
void aesEncrypt(uint8_t *out, uint8_t *in, uint8_t *expanded_key)
{
uint8_t round;
memcpy(out, in, 16);
xor16Bytes(out, expanded_key);
for (round = 1; round < 11; round++)
{
if (round < 10)
{
mixSubColumns(out);
}
else
{
shiftOrInvShiftRows(out, 5);
}
xor16Bytes(out, &(expanded_key[round * 16]));
}
}
/** Decrypt one 128 bit block.
* \param out The resulting plaintext will be placed here. This should be a
* 16 byte array.
* \param in The ciphertext to decrypt. This should also be a 16 byte array.
* \param expanded_key Should point to an array containing the expanded
* key (see aesExpandKey()).
*/
void aesDecrypt(uint8_t *out, uint8_t *in, uint8_t *expanded_key)
{
uint8_t round;
memcpy(out, in, 16);
xor16Bytes(out, &(expanded_key[160]));
shiftOrInvShiftRows(out, 13);
for (round = 10; round--; )
{
xor16Bytes(out, &(expanded_key[round * 16]));
if (round != 0)
{
invMixSubColumns(out);
}
}
}
#ifdef TEST_AES
/** Run unit tests using test vectors from a file. The file is expected to be
* in the same format as the NIST "AES Known Answer Test (KAT) Vectors",
* which can be obtained from: http://csrc.nist.gov/groups/STM/cavp/#01
* \param filename The name of the file containing the test vectors.
*/
static void scanTestVectors(const char *filename)
{
FILE *test_vector_file;
int test_number;
bool is_encrypt;
int i;
int j;
int value;
bool seen_count;
bool test_failed;
char buffer[16];
uint8_t key[16];
uint8_t plaintext[16];
uint8_t ciphertext[16];
uint8_t compare_text[16];
uint8_t expanded_key[EXPANDED_KEY_SIZE];
test_vector_file = fopen(filename, "r");
if (test_vector_file == NULL)
{
printf("Could not open %s, please get it \
(\"AES Known Answer Test (KAT) Vectors\") \
from http://csrc.nist.gov/groups/STM/cavp/#01", filename);
exit(1);
}
test_number = 1;
for (i = 0; i < 9; i++)
{
skipLine(test_vector_file);
}
is_encrypt = true;
while (!feof(test_vector_file))
{
// Check for [DECRYPT].
skipWhiteSpace(test_vector_file);
seen_count = false;
while (!seen_count)
{
fgets(buffer, 6, test_vector_file);
skipLine(test_vector_file);
skipWhiteSpace(test_vector_file);
if (!strcmp(buffer, "[DECR"))
{
is_encrypt = false;
}
else if (!strcmp(buffer, "COUNT"))
{
seen_count = true;
}
else
{
printf("Expected \"COUNT\" or \"[DECR\"\n");
exit(1);
}
}
// Get key.
fgets(buffer, 7, test_vector_file);
if (strcmp(buffer, "KEY = "))
{
printf("Parse error; expected \"KEY = \"\n");
exit(1);
}
for (i = 0; i < 16; i++)
{
fscanf(test_vector_file, "%02x", &value);
key[i] = (uint8_t)value;
}
skipWhiteSpace(test_vector_file);
// Get plaintext/ciphertext.
// For encryption tests, the order is: plaintext, then ciphertext.
// For decryption tests, the order is: ciphertext, then plaintext.
for (j = 0; j < 2; j++)
{
if (((is_encrypt) && (j == 0))
|| ((!is_encrypt) && (j != 0)))
{
fgets(buffer, 13, test_vector_file);
if (strcmp(buffer, "PLAINTEXT = "))
{
printf("Parse error; expected \"PLAINTEXT = \"\n");
exit(1);
}
for (i = 0; i < 16; i++)
{
fscanf(test_vector_file, "%02x", &value);
plaintext[i] = (uint8_t)value;
}
}
else
{
fgets(buffer, 14, test_vector_file);
if (strcmp(buffer, "CIPHERTEXT = "))
{
printf("Parse error; expected \"CIPHERTEXT = \"\n");
exit(1);
}
for (i = 0; i < 16; i++)
{
fscanf(test_vector_file, "%02x", &value);
ciphertext[i] = (uint8_t)value;
}
}
skipWhiteSpace(test_vector_file);
} // end for (j = 0; j < 2; j++)
// Do encryption/decryption and compare.
aesExpandKey(expanded_key, key);
test_failed = false;
if (is_encrypt)
{
aesEncrypt(compare_text, plaintext, expanded_key);
if (memcmp(compare_text, ciphertext, 16))
{
test_failed = true;
}
}
else
{
aesDecrypt(compare_text, ciphertext, expanded_key);
if (memcmp(compare_text, plaintext, 16))
{
test_failed = true;
}
}
if (!test_failed)
{
reportSuccess();
}
else
{
printf("Test %d failed\n", test_number);
printf("Key: ");
printBigEndian16(key);
printf("\nPlaintext: ");
printBigEndian16(plaintext);
printf("\nCiphertext: ");
printBigEndian16(ciphertext);
printf("\n");
reportFailure();
}
test_number++;
}
fclose(test_vector_file);
}
int main(void)
{
initTests(__FILE__);
scanTestVectors("ECBVarTxt128.rsp");
scanTestVectors("ECBVarKey128.rsp");
scanTestVectors("ECBKeySbox128.rsp");
scanTestVectors("ECBGFSbox128.rsp");
finishTests();
exit(0);
}
#endif // #ifdef TEST_AES