-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathchat.py
129 lines (92 loc) · 3.62 KB
/
chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#!/usr/bin/env python
__docformat__ = 'restructedtext en'
__authors__ = ("Julian Serban, Alessandro Sordoni")
__contact__ = "Julian Serban <[email protected]>"
import argparse
import cPickle
import traceback
import itertools
import logging
import time
import sys
import search
import collections
import string
import os
import numpy
import codecs
import nltk
from random import randint
from dialog_encdec import DialogEncoderDecoder
from numpy_compat import argpartition
from state import prototype_state
logger = logging.getLogger(__name__)
class Timer(object):
def __init__(self):
self.total = 0
def start(self):
self.start_time = time.time()
def finish(self):
self.total += time.time() - self.start_time
def sample(model, seqs=[[]], n_samples=1, beam_search=None, ignore_unk=False):
if beam_search:
sentences = []
seq = model.words_to_indices(seqs[0])
gen_ids, gen_costs = beam_search.search(seq, n_samples, ignore_unk=ignore_unk)
for i in range(len(gen_ids)):
sentence = model.indices_to_words(gen_ids[i])
sentences.append(sentence)
return sentences
else:
raise Exception("I don't know what to do")
def parse_args():
parser = argparse.ArgumentParser("Sample (with beam-search) from the session model")
parser.add_argument("--ignore-unk",
default=True, action="store_true",
help="Ignore unknown words")
parser.add_argument("model_prefix",
help="Path to the model prefix (without _model.npz or _state.pkl)")
parser.add_argument("--normalize",
action="store_true", default=False,
help="Normalize log-prob with the word count")
return parser.parse_args()
def main():
args = parse_args()
state = prototype_state()
state_path = args.model_prefix + "_state.pkl"
model_path = args.model_prefix + "_model.npz"
with open(state_path) as src:
state.update(cPickle.load(src))
logging.basicConfig(level=getattr(logging, state['level']), format="%(asctime)s: %(name)s: %(levelname)s: %(message)s")
model = DialogEncoderDecoder(state)
if os.path.isfile(model_path):
logger.debug("Loading previous model")
model.load(model_path)
else:
raise Exception("Must specify a valid model path")
logger.info("This model uses " + model.decoder_bias_type + " bias type")
beam_search = None
sampler = None
beam_search = search.BeamSearch(model)
beam_search.compile()
# Start chat loop
utterances = collections.deque()
while (True):
var = raw_input("User - ")
while len(utterances) > 2:
utterances.popleft()
current_utterance = [ model.start_sym_sentence ] + var.split() + [ model.end_sym_sentence ]
utterances.append(current_utterance)
# Sample a random reply. To spicy it up, we could pick the longest reply or the reply with the fewest placeholders...
seqs = list(itertools.chain(*utterances))
sentences = sample(model, \
seqs=[seqs], ignore_unk=args.ignore_unk, \
beam_search=beam_search, n_samples=5)
if len(sentences) == 0:
raise ValueError("Generation error, no sentences were produced!")
reply = " ".join(sentences[0]).encode('utf-8')
print "AI - ", reply
utterances.append(sentences[0])
if __name__ == "__main__":
# Run with THEANO_FLAGS=mode=FAST_RUN,floatX=float32,allow_gc=True,scan.allow_gc=False,nvcc.flags=-use_fast_math python chat.py Model_Name
main()