-
Notifications
You must be signed in to change notification settings - Fork 15
/
test2.pl
314 lines (268 loc) · 11.4 KB
/
test2.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
# vim: ft=perl6
use Test;
use MONKEY_TYPING;
is (("ab" x 10) ~~ /[aba?] ** 10/).chars, 20, "**COUNT works with backtracking";
is ("a, d" ~~ /:s <alpha>+ % ','/), 'a, d', 'sigspace respected on %';
is ("a b c" ~~ /:s <alpha> ** 3/), 'a b c', 'sigspace respected on **';
is ("a, d" ~~ /:s <alpha>+%','/), 'a', 'no-sigspace respected on %';
is ("a b c def" ~~ /:s <alpha>**3/), ' def', 'no-sigspace respected on **';
is ("a,b,c," ~~ / <alpha>+ %% ','/), 'a,b,c,', '%% works';
is ("a,b,c" ~~ / <alpha>+ %% ','/), 'a,b,c', '%% works like %';
is ("a,b,c" ~~ / <alpha>* %% ','/), 'a,b,c', '% works on *';
is ("XX" ~~ / X <alpha>* %% ',' X/), 'XX', '% works on * (null string)';
"foo" ~~ / (<.alpha>) <alpha> /;
is $(), "fo", '$() gets the string';
ok !$/.ast.defined, '$/.ast not defined without make';
is @().join("|"), "f", '@() returns positional captures';
is %().kv.join("|"), "alpha|o", '%() returns named captures';
"bar" ~~ / { make 5 } /;
is $(), 5, '$() gets AST';
{
my $rx = /a+/;
is ("ooofaaabkkk" ~~ /f $rx b/), "faaab", '$var can call regexes';
my @a1 = ( 'fo', 'fooo', 'bar' );
is ("barxy" ~~ / @a1 /), "bar", '@var works';
is ("fooooooo" ~~ / @a1 /), 'fooo', '@var has longest-token semantics';
my @a2 = ( /fooo/, /fo+/ );
is ("fooooooo" ~~ / @a2 /), "fooooooo", '@var has longest-token semantics with regex elements';
my $rxstr = 'a+';
is ("ooofaaabkkk" ~~ /f <$rx> b/), "faaab", '<$var> can call regexes';
is ("ooofaaabkkk" ~~ /f <$rxstr> b/), "faaab", '<$var> can compile regexes';
is ("fooooooo" ~~ / <@a2> /), "fooooooo", '<@var> has longest-token semantics with regex elements';
my @a3 = ( 'bar?', 'fooo', 'fo+' );
is ("barx" ~~ / <@a3> /), "bar", '<@var> works (compiling)';
is ("fooooooo" ~~ / <@a3> /), 'fooooooo', '<@var> has longest-token semantics (compiling)';
is ("foo" ~~ /<."alpha"()>/), "f", "dottyop assertions work";
my regex sam { \d+ }
is ("fo23op" ~~ /<sam>/), "23", "lexical regexes can be used without &";
{
sub alpha() { }
is ("xyz" ~~ /<alpha>/), "x", "non-regex subs do not confuse";
}
{
my regex alpha { . }
is ("4e" ~~ /<.alpha>/), "e", "leading dot forces method interpretation";
}
my regex two($x) { $x $x }
is ("xfoofoox" ~~ /<two("foo")>/), "foofoo", "calling lexical regexes like <two> with args works";
is ("xfoofoox" ~~ /<&two("foo")>/), "foofoo", "calling lexical regexes like <&two> with args works";
}
{
my proto regex foo { x {*} y }
my regex foo:sym<+> { <sym> }
my regex foo:sym<-> { <sym> }
is ("x+y" ~~ /<&foo>/), "x+y", "proto regexes can add stuff before and after";
#is ~$<foo><dispatch>, "+", "<dispatch> works"; #NIECZA
my grammar G {
proto token bar { c {*} d }
token bar:xyz { eee }
token TOP { ([<bar> | ceee]) .* }
}
is G.parse("ceeed")[0], 'ceeed', 'LTM works into dispatch nodes';
}
{
is ("fffoxxx" ~~ / f <( . )> x /), "o", '<( )> works basically';
is $/.from, 3, '$/.from set correctly';
is $/.to, 4, '$/.to set correctly';
my $var = 'one $16 two $9 three';
$var ~~ s:g[\$ <( \d+ )>] *= 2;
is $var, 'one $32 two $18 three', 's:g <( example from S05';
# because of anchoring behavior, leading context behaves differently
is "abcdef".comb(/<(.)>../).join('|'), 'a|b|c|d',
'.comb with overlapping context regions';
$var = 'abcdef';
$var ~~ s:g[<(.)>....] = $/.uc;
is $var, 'ABcdef', 's:g with overlapping context';
is ("foo" ~~ / f <( .. /), "oo", '<( does not need to be paired';
is ("foo" ~~ / f )> .. /), "f", ')> does not need to be paired';
}
{
my class Bt {
has $!pie;
method get_pie() { $!pie }
submethod BUILD(:$x) { $!pie = $x }
}
is Bt.new(x => 5).get_pie, 5, "BUILD basically works";
my class SubBT is Bt {
has $!pie2;
method get_pie2() { $!pie2 }
submethod BUILD(:$y) { $!pie2 = $y }
}
is SubBT.new(x => 5, y => 2).get_pie, 5, "superclass' BUILD in subclass";
is SubBT.new(x => 5, y => 2).get_pie2, 2, "subclass' BUILD in subclass";
my @l;
@l := [1,2,3];
is +[@l], 3, 'binding to existing list vars works';
}
{
my $rxd = / (\d+) <{ "a ** $0" }> /;
is ("3aaa" ~~ $rxd), "3aaa", '<{}> works';
"abcd" ~~ / $0=[.] $0=[.] $<x>=[.] $<x>=[.] /;
is join('|',@0), 'a|b', 'Context respected on @0';
is join('|',@<x>), 'c|d', 'Context respected on @<x>';
}
is [ 1,2,3 ... 10 ], [1..10], 'arithmetic sequence';
is [ 1,2,4 ... 256 ], [map 2 ** *, 0..8], 'geometric sequence';
is [ 1,1,*+* ...^ *>100 ], [1,1,2,3,5,8,13,21,34,55,89], 'callback sequence';
eval_lives_ok q[
class F2855::G7136 { ... }
class F2855::G7136 { }
], "can stub then define nested classes";
{
my @l = gather for 1,2 { take $_ };
is ~@l, "1 2", "gather for works";
eval_dies_ok 'class { has $!foo; has $!foo; }',
"double attribute declaration caught";
eval_dies_ok 'class { method abar {}; method abar {}; }',
"double method declaration caught";
# <chain> isn't tested here. It's not possible to do the same AST
# reconstruction tricks. However if <right> etc work, and chained
# comparisons work, it's pretty likely to work combinationally.
sub infix:<@a> { "a(@_.Str())" }
sub infix:<@b> is assoc<right> { "b(@_.Str())" }
sub infix:<@c> is assoc<list> { "c(@_.Str())" }
sub infix:<@d> is assoc<list> { "d(@_.Str())" } #OK not used
sub infix:<@e> is assoc<non> { "e(@_.Str())" }
sub infix:<@f> is assoc<left> { "f(@_.Str())" }
is (1 @a 2), 'a(1 2)', 'basic operator function';
is (1 @a 2 @a 3), 'a(a(1 2) 3)', 'operators default to left assoc';
is (1 @f 2 @f 3), 'f(f(1 2) 3)', 'explicit assoc<left> works too';
is (1 @f 2 @a 3), 'a(f(1 2) 3)', 'mixed <left> at same prec works (1)';
is (1 @a 2 @f 3), 'f(a(1 2) 3)', 'mixed <left> at same prec works (2)';
is (1 @b 2 @b 3), 'b(1 b(2 3))', 'assoc<right> overrides';
is (1 @c 2 @c 3), 'c(1 2 3)', 'assoc<list> takes all 3 at once';
eval_dies_ok q[1 @c 2 @d 3], 'mixed <list> at same prec dies';
eval_dies_ok q[1 @e 2 @e 3], '<non> dies with 3';
is (1 @e 2), 'e(1 2)', '<non> with 2 works';
sub infix:<@g> is tighter<@a> { "g(@_.Str())" } #OK not used
sub infix:<@h> is looser<@a> { "h(@_.Str())" } #OK not used
sub infix:<@i> is tighter(&infix:<@a>) { "i(@_.Str())" } #OK not used
sub infix:<@j> is looser(&infix:<@a>) { "j(@_.Str())" } #OK not used
sub infix:<@k> is tighter<@h> { "k(@_.Str())" } #OK not used
sub infix:<@l> is looser<@g> { "l(@_.Str())" } #OK not used
sub infix:<@m> is equiv<@a> { "m(@_.Str())" } #OK not used
sub infix:<@n> is equiv(&infix:<@a>) { "n(@_.Str())" } #OK not used
sub infix:<@o> is equiv<@g> { "o(@_.Str())" } #OK not used
sub infix:<@p> is equiv<@h> { "p(@_.Str())" } #OK not used
sub infix:<@q> is equiv<@b> { "q(@_.Str())" } #OK not used
my @cmptests = (
'a', 'g', 1, 0, 'tighter<> works',
'h', 'a', 1, 0, 'looser<> works',
'a', 'i', 1, 0, 'tighter<> works with code object',
'j', 'a', 1, 0, 'looser<> works with code object',
'h', 'k', 1, 0, 'tighter of a looser works',
'l', 'g', 1, 0, 'looser of a tighter works',
'k', 'a', 1, 0, 'tighter of a looser is still looser',
'a', 'l', 1, 0, 'looser of a tighter is still tighter',
'm', 'a', 0, 0, 'equiv works',
'n', 'a', 0, 0, 'equiv works with code object',
'o', 'g', 0, 0, 'equiv of tighter works',
'p', 'h', 0, 0, 'equiv of looser works',
'q', 'q', 1, 1, 'equiv also copies associativity',
);
sub ckb($res is copy) { #OK not used
$res ~~ s:g /<.alpha>//; #::
$res eq '((1 2) 3)' ?? 0 !! 1;
}
my @frags;
for @cmptests -> $lt, $gt, $right_br_ord, $right_br_opp, $msg {
push @frags, "is ckb(1 @$lt 2 @$gt 3), $right_br_ord, '$msg (1)';\n";
push @frags, "is ckb(1 @$gt 2 @$lt 3), $right_br_opp, '$msg (2)';\n";
}
EVAL @frags.join;
}
{
lives_ok { my $x; $x = Mu },
"can assign Mu to default-typed variable (noninline)";
lives_ok { if 1 { my $x; $x = Mu } },
"can assign Mu to default-typed variable (inline)";
dies_ok { my Any $x; $x = Mu },
"cannot assign Mu to Any-typed variable (noninline)";
dies_ok { if 1 { my Any $x; $x = Mu } },
"cannot assign Mu to Any-typed variable (inline)";
ok { my $x; $x }.() === Any,
"default-typed variable receives Any (noninline)";
ok { if 1 { my $x; $x } }.() === Any,
"default-typed variable receives Any (inline)";
lives_ok { my @x; push @x, Mu }, "can push Mu";
lives_ok { my @x; push @x, 5; @x[0] = Mu }, "push creates Mu-ready vars";
lives_ok { my @x; unshift @x, Mu }, "can unshift Mu";
lives_ok { my @x; unshift @x, 5; @x[0] = Mu }, "unshift creates Mu-ready vars";
lives_ok { my $x; $x[0] = Mu }, "array creation autoviv supports Mu";
lives_ok { my @x; @x[0] = Mu }, "element creation autoviv supports Mu";
lives_ok { my $x; $x<a> = Mu }, "hash creation autoviv supports Mu";
lives_ok { my %x; %x<a> = Mu }, "hash element creation autoviv supports Mu";
}
# regression test from thou
{
my $x = 'Bar';
my $in = qq:to [A] ;
$x Foo
A
is $in.substr(0,8), 'Bar Foo', "spaces preserved after heredoc interpolation";
}
{
ok @*ARGS.flattens, '@*ARGS is a flatteny thing';
ok %*ENV.flattens, '%*ENV is a flatteny thing';
@Y8158::z := [1,2,3];
ok @Y8158::z.flattens, 'binding to @foo::bar works';
}
# from colomon
{
isa_ok 1 ** 2, Int, "1 squared is an Int";
is 1 ** 2, 1, "1 squared is 1";
isa_ok 2 ** 3, Int, "2 ** 3 is an Int";
is 2 ** 3, 8, "2 ** 3 is 8";
isa_ok (2/3) ** 3, Rat, "(2/3) ** 3 is a Rat";
is (2/3) ** 3, 8 / 27, "(2/3) ** 3 is 8 / 27";
isa_ok FatRat.new(2, 3) ** 3, FatRat, "FatRat.new(2, 3) ** 3 is a FatRat";
is FatRat.new(2, 3) ** 3, 8 / 27, "FatRat.new(2, 3) ** 3 is 8 / 27";
isa_ok 2.54e0 ** 3, Num, "2.54e0 ** 3 is an Num";
is 2.54e0 ** 3, 16.387064e0, "2.54e0 ** 3 is 16.387064e0";
isa_ok 2 ** -3, Rat, "2 ** -3 is an Rat"; # spec?
is 2 ** -3, 1/8, "2 ** -3 is 1/8";
isa_ok (2/3) ** -3, Rat, "(2/3) ** -3 is a Rat";
is (2/3) ** -3, 27 / 8, "(2/3) ** -3 is 27 / 8";
isa_ok FatRat.new(2, 3) ** -3, FatRat, "FatRat.new(2, 3) ** -3 is a FatRat";
is FatRat.new(2, 3) ** -3, 27 / 8, "FatRat.new(2, 3) ** -3 is 27 / 8";
isa_ok 2.54e0 ** -3, Num, "2.54e0 ** -3 is an Num";
is_approx (2.54e0 ** -3), 0.0610237440947323, "2.54e0 ** -3 is 0.0610237440947323, more or less";
is_approx 1i ** 2, -1, "1i ** 2 is -1";
is_approx 1i ** 3, -1i, "1i ** 3 is -i";
is_approx 1i ** 4, 1, "1i ** 4 is 1";
}
{
"x" ~~ /./;
$/.perl; # regression; failure mode was infinite loop
my $x = 1;
2 R+= $x;
is $x, 3, 'R+= works';
sub foo(@y is copy) { +@y }
is foo([1,2,4]), 3, '@y is copy works with non-flatteny values';
}
lives_ok { ^2 X ^2 }, 'X works on Ranges';
#is $?ORIG.substr(0,5), '# vim', '$?ORIG works';
# {
# {
# our $x = 5; #OK
# }
# ok $::x == 5, '$::x finds our variable';
#
# package Fao { our $y = 6; } #OK
# ok $::Fao::y == 6, '$::Fao::y works as $Fao::y';
#
# { class Mao { } }
# ok ::Mao.new.defined, 'can use classes via ::Mao';
# }
#
# {
# my $x = 7; #OK
# ok $::x == 7, '$::x can find lexicals';
# class A3 {
# method moo { 42 }
# class B4 {
# ok ::A3.moo, '::A3 can find outer classes';
# }
# }
# }
done;