forked from BertaBescos/EmptyCities_SLAM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.lua
1440 lines (1269 loc) · 57.6 KB
/
models.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
require 'nngraph'
-- definition of normalization types
normalization = nil
function set_normalization(norm)
if norm == 'instance' then
require 'util.InstanceNormalization'
print('use InstanceNormalization')
normalization = nn.InstanceNormalization
elseif norm == 'batch' then
print('use SpatialBatchNormalization')
normalization = nn.SpatialBatchNormalization
end
end
-- initialization of model weights
function weights_init(m)
local name = torch.type(m)
if name:find('Convolution') then
m.weight:normal(0.0, 0.02)
m.bias:fill(0)
elseif name:find('BatchNormalization') then
if m.weight then m.weight:normal(1.0, 0.02) end
if m.bias then m.bias:fill(0) end
end
end
-- function to load generator G
function defineG(input_nc, output_nc, ngf)
local netG = nil
if opt.which_model_netG == "encoder_decoder" then
netG = defineG_encoder_decoder(input_nc, output_nc, ngf)
elseif opt.which_model_netG == "unet" then
netG = defineG_unet(input_nc, output_nc, ngf)
elseif opt.which_model_netG == "unet_128" then
netG = defineG_unet_128(input_nc, output_nc, ngf)
elseif opt.which_model_netG == "unet_upsample" then
netG = defineG_unet_upsampling(input_nc, output_nc, ngf)
elseif opt.which_model_netG == "resnet_512" then
netG = defineG_resnet_512(input_nc, output_nc, ngf)
elseif opt.which_model_netG == "uresnet_512" then
netG = defineG_Uresnet_512(input_nc, output_nc, ngf)
else
error("unsupported netG model")
end
netG:apply(weights_init)
return netG
end
-- function to load discriminator D
function defineD(input_nc, output_nc, ndf)
local netD = nil
if opt.condition_GAN == 1 or opt.condition_mD == 1 then
input_nc_tmp = input_nc
else
input_nc_tmp = 0 -- only penalizes structure in output channels
end
if opt.which_model_netD == "basic" then
netD = defineD_basic(input_nc_tmp, output_nc, ndf)
elseif opt.which_model_netD == "n_layers" then
netD = defineD_n_layers(input_nc_tmp, output_nc, ndf, opt.n_layers_D)
else
error("unsupported netD model")
end
netD:apply(weights_init)
return netD
end
--function to load models for generator, discriminator, semantic segmentation, features and noise
function load_models()
if opt.continue_train == 1 then
print('loading previously trained netG...')
netG = util.load(paths.concat(opt.checkpoints_dir, opt.name, 'latest_net_G.t7'), opt)
print('loading previously trained netD...')
netD = util.load(paths.concat(opt.checkpoints_dir, opt.name, 'latest_net_D.t7'), opt)
if opt.NSYNTH_DATA_ROOT ~= '' then
print('loading previously trained netSS...')
netSS = torch.load(paths.concat(opt.checkpoints_dir, opt.name, 'latest_net_SS.net'))
netSS:training()
print('define model netDynSS...')
netDynSS = nn.Sequential()
local convDyn = nn.SpatialFullConvolution(20,1,1,1,1,1)
convDyn.weight[{{1,12},1,1,1}] = -8/20 -- Static
convDyn.weight[{{13,20},1,1,1}] = 12/20 -- Dynamic
convDyn.bias:zero()
netDynSS:add(nn.SoftMax())
netDynSS:add(convDyn)
netDynSS:add(nn.Tanh())
end
else
print('define model netG...')
netG = defineG(opt.input_gan_nc + opt.mask_nc*opt.condition_mG, opt.output_gan_nc, opt.ngf)
print('define model netD...')
netD = defineD(opt.input_gan_nc + opt.mask_nc*opt.condition_mD + opt.noise_nc*opt.condition_noise, opt.output_gan_nc, opt.ndf)
end
-- define netFeatures model
lossFeatures = opt.lossDetector + opt.lossOrientation + opt.lossDescriptor
local stride = 5
if lossFeatures > 0 then
print('define model netFeatures...')
netFeaturesReal = define_netFeatures(opt.lossDetector, opt.lossOrientation, opt.lossDescriptor, stride)
netFeaturesReal:evaluate()
netFeaturesFake = define_netFeatures(opt.lossDetector, opt.lossOrientation, opt.lossDescriptor, stride)
netFeaturesFake:evaluate()
if opt.output_gan_nc == 3 then
netRGB2GrayReal = define_RGB2Gray()
netRGB2GrayReal:evaluate()
netRGB2GrayFake = define_RGB2Gray()
netRGB2GrayFake:evaluate()
end
end
-- define SRM noise model
if opt.condition_noise == 1 then
print('define model netSRM...')
netNoise = define_netNoise(opt.output_gan_nc)
netNoise:evaluate()
end
end
--function to load models for generator and semantic segmentation
function load_test_models()
-- load all models
netG = util.load(paths.concat(opt.checkpoints_dir, opt.name .. '/' .. opt.which_epoch .. '_net_G' .. '.t7'), opt)
netG:evaluate()
print(netG)
if opt.mask == '' then
netSS = torch.load(paths.concat(opt.checkpoints_dir, opt.name .. '/' .. opt.which_epoch .. '_net_SS' .. '.net'))
netSS:evaluate()
netDynSS = nn.Sequential()
local convDyn = nn.SpatialFullConvolution(20,1,1,1,1,1)
convDyn.weight[{{1,12},1,1,1}] = -8/20 -- Static
convDyn.weight[{{13,20},1,1,1}] = 12/20 -- Dynamic
convDyn.bias:zero()
netDynSS:add(nn.SoftMax())
netDynSS:add(convDyn)
--netDynSS:add(nn.Tanh())
if opt.gpu > 0 then
netDynSS = netDynSS:cuda()
end
print(netDynSS)
end
end
--function to transfer networks and tensors to gpu if opt.gpu = 1
function transfer_to_gpu()
if opt.gpu > 0 then
print('transferring to gpu...')
require 'cunn'
cutorch.setDevice(opt.gpu)
realRGB_A = realRGB_A:cuda()
val_realRGB_A = val_realRGB_A:cuda()
realRGB_B = realRGB_B:cuda(); fake_B = fake_B:cuda()
val_realRGB_B = val_realRGB_B:cuda(); val_fake_B = val_fake_B:cuda()
real_C = real_C:cuda()
val_real_C = val_real_C:cuda()
real_ABC = real_ABC:cuda(); fake_ABC = fake_ABC:cuda()
if opt.cudnn==1 then
netG = util.cudnn(netG); netD = util.cudnn(netD)
end
netD:cuda(); netG:cuda()
if lossFeatures > 0 then
netFeaturesReal:cuda()
netFeaturesFake:cuda()
if opt.output_gan_nc == 3 then
netRGB2GrayReal:cuda()
netRGB2GrayFake:cuda()
end
end
if opt.NSYNTH_DATA_ROOT ~= '' then
netDynSS:cuda()
criterionSS:cuda()
end
if opt.condition_noise == 1 then
netNoise:cuda()
end
print('done')
else
print('running model on CPU')
end
end
-- generator with encoder and decoder
function defineG_encoder_decoder(input_nc, output_nc, ngf)
local netG = nil
-- input is (nc) x 256 x 256
local e1 = - nn.SpatialConvolution(input_nc, ngf, 4, 4, 2, 2, 1, 1)
-- input is (ngf) x 128 x 128
local e2 = e1 - nn.LeakyReLU(0.2, true) - nn.SpatialConvolution(ngf, ngf * 2, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 2)
-- input is (ngf * 2) x 64 x 64
local e3 = e2 - nn.LeakyReLU(0.2, true) - nn.SpatialConvolution(ngf * 2, ngf * 4, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 4)
-- input is (ngf * 4) x 32 x 32
local e4 = e3 - nn.LeakyReLU(0.2, true) - nn.SpatialConvolution(ngf * 4, ngf * 8, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 8)
-- input is (ngf * 8) x 16 x 16
local e5 = e4 - nn.LeakyReLU(0.2, true) - nn.SpatialConvolution(ngf * 8, ngf * 8, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 8)
-- input is (ngf * 8) x 8 x 8
local e6 = e5 - nn.LeakyReLU(0.2, true) - nn.SpatialConvolution(ngf * 8, ngf * 8, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 8)
-- input is (ngf * 8) x 4 x 4
local e7 = e6 - nn.LeakyReLU(0.2, true) - nn.SpatialConvolution(ngf * 8, ngf * 8, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 8)
-- input is (ngf * 8) x 2 x 2
local e8 = e7 - nn.LeakyReLU(0.2, true) - nn.SpatialConvolution(ngf * 8, ngf * 8, 4, 4, 2, 2, 1, 1) -- nn.SpatialBatchNormalization(ngf * 8)
-- input is (ngf * 8) x 1 x 1
local d1 = e8 - nn.ReLU(true) - nn.SpatialFullConvolution(ngf * 8, ngf * 8, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 8) - nn.Dropout(0.5)
-- input is (ngf * 8) x 2 x 2
local d2 = d1 - nn.ReLU(true) - nn.SpatialFullConvolution(ngf * 8, ngf * 8, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 8) - nn.Dropout(0.5)
-- input is (ngf * 8) x 4 x 4
local d3 = d2 - nn.ReLU(true) - nn.SpatialFullConvolution(ngf * 8, ngf * 8, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 8) - nn.Dropout(0.5)
-- input is (ngf * 8) x 8 x 8
local d4 = d3 - nn.ReLU(true) - nn.SpatialFullConvolution(ngf * 8, ngf * 8, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 8)
-- input is (ngf * 8) x 16 x 16
local d5 = d4 - nn.ReLU(true) - nn.SpatialFullConvolution(ngf * 8, ngf * 4, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 4)
-- input is (ngf * 4) x 32 x 32
local d6 = d5 - nn.ReLU(true) - nn.SpatialFullConvolution(ngf * 4, ngf * 2, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 2)
-- input is (ngf * 2) x 64 x 64
local d7 = d6 - nn.ReLU(true) - nn.SpatialFullConvolution(ngf * 2, ngf, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf)
-- input is (ngf) x128 x 128
local d8 = d7 - nn.ReLU(true) - nn.SpatialFullConvolution(ngf, output_nc, 4, 4, 2, 2, 1, 1)
-- input is (nc) x 256 x 256
local o1 = d8 - nn.Tanh()
netG = nn.gModule({e1},{o1})
return netG
end
-- generator with encoder, decoder and skip connections
function defineG_unet(input_nc, output_nc, ngf)
local netG = nil
-- input is (nc) x 256 x 256
local e1 = - nn.SpatialConvolution(input_nc, ngf, 4, 4, 2, 2, 1, 1)
-- input is (ngf) x 128 x 128
local e2 = e1 - nn.LeakyReLU(0.2, true) - nn.SpatialConvolution(ngf, ngf * 2, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 2)
-- input is (ngf * 2) x 64 x 64
local e3 = e2 - nn.LeakyReLU(0.2, true) - nn.SpatialConvolution(ngf * 2, ngf * 4, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 4)
-- input is (ngf * 4) x 32 x 32
local e4 = e3 - nn.LeakyReLU(0.2, true) - nn.SpatialConvolution(ngf * 4, ngf * 8, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 8)
-- input is (ngf * 8) x 16 x 16
local e5 = e4 - nn.LeakyReLU(0.2, true) - nn.SpatialConvolution(ngf * 8, ngf * 8, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 8)
-- input is (ngf * 8) x 8 x 8
local e6 = e5 - nn.LeakyReLU(0.2, true) - nn.SpatialConvolution(ngf * 8, ngf * 8, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 8)
-- input is (ngf * 8) x 4 x 4
local e7 = e6 - nn.LeakyReLU(0.2, true) - nn.SpatialConvolution(ngf * 8, ngf * 8, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 8)
-- input is (ngf * 8) x 2 x 2
local e8 = e7 - nn.LeakyReLU(0.2, true) - nn.SpatialConvolution(ngf * 8, ngf * 8, 4, 4, 2, 2, 1, 1) -- nn.SpatialBatchNormalization(ngf * 8)
-- input is (ngf * 8) x 1 x 1
local d1_ = e8 - nn.ReLU(true) - nn.SpatialFullConvolution(ngf * 8, ngf * 8, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 8) - nn.Dropout(0.5)
-- input is (ngf * 8) x 2 x 2
local d1 = {d1_,e7} - nn.JoinTable(2)
local d2_ = d1 - nn.ReLU(true) - nn.SpatialFullConvolution(ngf * 8 * 2, ngf * 8, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 8) - nn.Dropout(0.5)
-- input is (ngf * 8) x 4 x 4
local d2 = {d2_,e6} - nn.JoinTable(2)
local d3_ = d2 - nn.ReLU(true) - nn.SpatialFullConvolution(ngf * 8 * 2, ngf * 8, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 8) - nn.Dropout(0.5)
-- input is (ngf * 8) x 8 x 8
local d3 = {d3_,e5} - nn.JoinTable(2)
local d4_ = d3 - nn.ReLU(true) - nn.SpatialFullConvolution(ngf * 8 * 2, ngf * 8, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 8)
-- input is (ngf * 8) x 16 x 16
local d4 = {d4_,e4} - nn.JoinTable(2)
local d5_ = d4 - nn.ReLU(true) - nn.SpatialFullConvolution(ngf * 8 * 2, ngf * 4, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 4)
-- input is (ngf * 4) x 32 x 32
local d5 = {d5_,e3} - nn.JoinTable(2)
local d6_ = d5 - nn.ReLU(true) - nn.SpatialFullConvolution(ngf * 4 * 2, ngf * 2, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 2)
-- input is (ngf * 2) x 64 x 64
local d6 = {d6_,e2} - nn.JoinTable(2)
local d7_ = d6 - nn.ReLU(true) - nn.SpatialFullConvolution(ngf * 2 * 2, ngf, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf)
-- input is (ngf) x128 x 128
local d7 = {d7_,e1} - nn.JoinTable(2)
local d8 = d7 - nn.ReLU(true) - nn.SpatialFullConvolution(ngf * 2, output_nc, 4, 4, 2, 2, 1, 1)
-- input is (nc) x 256 x 256
local o1 = d8 - nn.Tanh()
netG = nn.gModule({e1},{o1})
--graph.dot(netG.fg,'netG','unet')
--graph.dot(netG.fg,'netG')
return netG
end
-- generator with encoder, decoder and skip connections
-- decoder has upsampling + stride 1 convolution rather than convolutions with stride 1/2
function defineG_unet_upsampling(input_nc, output_nc, ngf)
local netG = nil
-- input is (nc) x 256 x 256
local e1 = - nn.SpatialConvolution(input_nc, ngf, 4, 4, 2, 2, 1, 1)
-- input is (ngf) x 128 x 128
local e2 = e1 - nn.LeakyReLU(0.2, true) - nn.SpatialConvolution(ngf, ngf * 2, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 2)
-- input is (ngf * 2) x 64 x 64
local e3 = e2 - nn.LeakyReLU(0.2, true) - nn.SpatialConvolution(ngf * 2, ngf * 4, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 4)
-- input is (ngf * 4) x 32 x 32
local e4 = e3 - nn.LeakyReLU(0.2, true) - nn.SpatialConvolution(ngf * 4, ngf * 8, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 8)
-- input is (ngf * 8) x 16 x 16
local e5 = e4 - nn.LeakyReLU(0.2, true) - nn.SpatialConvolution(ngf * 8, ngf * 8, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 8)
-- input is (ngf * 8) x 8 x 8
local e6 = e5 - nn.LeakyReLU(0.2, true) - nn.SpatialConvolution(ngf * 8, ngf * 8, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 8)
-- input is (ngf * 8) x 4 x 4
local e7 = e6 - nn.LeakyReLU(0.2, true) - nn.SpatialConvolution(ngf * 8, ngf * 8, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 8)
-- input is (ngf * 8) x 2 x 2
local e8 = e7 - nn.LeakyReLU(0.2, true) - nn.SpatialConvolution(ngf * 8, ngf * 8, 4, 4, 2, 2, 1, 1) -- nn.SpatialBatchNormalization(ngf * 8)
-- input is (ngf * 8) x 1 x 1
local d1_ = e8 - nn.ReLU(true) - nn.SpatialUpSamplingNearest(2) - nn.SpatialConvolution(ngf * 8, ngf * 8, 4, 4, 1, 1, 1, 1) - nn.SpatialZeroPadding(0, 1, 0, 1) - nn.SpatialBatchNormalization(ngf * 8) - nn.Dropout(0.5)
-- input is (ngf * 8) x 2 x 2
local d1 = {d1_,e7} - nn.JoinTable(2)
-- input is (ngf * 8 * 2) x 2 x 2
local d2_ = d1 - nn.ReLU(true) - nn.SpatialUpSamplingNearest(2) - nn.SpatialConvolution(ngf * 8 * 2, ngf * 8, 4, 4, 1, 1, 1, 1) - nn.SpatialZeroPadding(1, 0, 1, 0) - nn.SpatialBatchNormalization(ngf * 8) - nn.Dropout(0.5)
-- input is (ngf * 8) x 4 x 4
local d2 = {d2_,e6} - nn.JoinTable(2)
-- input is (ngf * 8 * 2) x 4 x 4
local d3_ = d2 - nn.ReLU(true) - nn.SpatialUpSamplingNearest(2) - nn.SpatialConvolution(ngf * 8 * 2, ngf * 8, 4, 4, 1, 1, 1, 1) - nn.SpatialZeroPadding(1, 0, 0, 1) - nn.SpatialBatchNormalization(ngf * 8) - nn.Dropout(0.5)
-- input is (ngf * 8) x 8 x 8
local d3 = {d3_,e5} - nn.JoinTable(2)
-- input is (ngf * 8 * 2) x 8 x 8
local d4_ = d3 - nn.ReLU(true) - nn.SpatialUpSamplingNearest(2) - nn.SpatialConvolution(ngf * 8 * 2, ngf * 8, 4, 4, 1, 1, 1, 1) - nn.SpatialZeroPadding(0, 1, 1, 0) - nn.SpatialBatchNormalization(ngf * 8)
-- input is (ngf * 8) x 16 x 16
local d4 = {d4_,e4} - nn.JoinTable(2)
-- input is (ngf * 8 * 2) x 16 x 16
local d5_ = d4 - nn.ReLU(true) - nn.SpatialUpSamplingNearest(2) - nn.SpatialConvolution(ngf * 8 * 2, ngf * 4, 4, 4, 1, 1, 1, 1) - nn.SpatialZeroPadding(0, 1, 0, 1) - nn.SpatialBatchNormalization(ngf * 4)
-- input is (ngf * 4) x 32 x 32
local d5 = {d5_,e3} - nn.JoinTable(2)
-- input is (ngf * 4 * 2) x 32 x 32
local d6_ = d5 - nn.ReLU(true) - nn.SpatialUpSamplingNearest(2) - nn.SpatialConvolution(ngf * 4 * 2, ngf * 2, 4, 4, 1, 1, 1, 1) - nn.SpatialZeroPadding(1, 0, 1, 0) - nn.SpatialBatchNormalization(ngf * 2)
-- input is (ngf * 2) x 64 x 64
local d6 = {d6_,e2} - nn.JoinTable(2)
-- input is (ngf * 2 * 2) x 64 x 64
local d7_ = d6 - nn.ReLU(true) - nn.SpatialUpSamplingNearest(2) - nn.SpatialConvolution(ngf * 2 * 2, ngf, 4, 4, 1, 1, 1, 1) - nn.SpatialZeroPadding(1, 0, 0, 1) - nn.SpatialBatchNormalization(ngf)
-- input is (ngf) x128 x 128
local d7 = {d7_,e1} - nn.JoinTable(2)
-- input is (ngf * 2) x128 x 128
local d8 = d7 - nn.ReLU(true) - nn.SpatialUpSamplingNearest(2) - nn.SpatialConvolution(ngf * 2, output_nc, 4, 4, 1, 1, 1, 1) - nn.SpatialZeroPadding(0, 1, 1, 0)
-- input is (nc) x 256 x 256
local o1 = d8 - nn.Tanh()
netG = nn.gModule({e1},{o1})
--graph.dot(netG.fg,'netG','unet_up') --bbescos
--graph.dot(netG.fg,'netG')
return netG
end
-- generator with encoder, decoder and skip connections
function defineG_unet_128(input_nc, output_nc, ngf)
-- Two layer less than the default unet to handle 128x128 input
local netG = nil
-- input is (nc) x 128 x 128
local e1 = - nn.SpatialConvolution(input_nc, ngf, 4, 4, 2, 2, 1, 1)
-- input is (ngf) x 64 x 64
local e2 = e1 - nn.LeakyReLU(0.2, true) - nn.SpatialConvolution(ngf, ngf * 2, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 2)
-- input is (ngf * 2) x 32 x 32
local e3 = e2 - nn.LeakyReLU(0.2, true) - nn.SpatialConvolution(ngf * 2, ngf * 4, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 4)
-- input is (ngf * 4) x 16 x 16
local e4 = e3 - nn.LeakyReLU(0.2, true) - nn.SpatialConvolution(ngf * 4, ngf * 8, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 8)
-- input is (ngf * 8) x 8 x 8
local e5 = e4 - nn.LeakyReLU(0.2, true) - nn.SpatialConvolution(ngf * 8, ngf * 8, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 8)
-- input is (ngf * 8) x 4 x 4
local e6 = e5 - nn.LeakyReLU(0.2, true) - nn.SpatialConvolution(ngf * 8, ngf * 8, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 8)
-- input is (ngf * 8) x 2 x 2
local e7 = e6 - nn.LeakyReLU(0.2, true) - nn.SpatialConvolution(ngf * 8, ngf * 8, 4, 4, 2, 2, 1, 1) -- nn.SpatialBatchNormalization(ngf * 8)
-- input is (ngf * 8) x 1 x 1
local d1_ = e7 - nn.ReLU(true) - nn.SpatialFullConvolution(ngf * 8, ngf * 8, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 8) - nn.Dropout(0.5)
-- input is (ngf * 8) x 2 x 2
local d1 = {d1_,e6} - nn.JoinTable(2)
local d2_ = d1 - nn.ReLU(true) - nn.SpatialFullConvolution(ngf * 8 * 2, ngf * 8, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 8) - nn.Dropout(0.5)
-- input is (ngf * 8) x 4 x 4
local d2 = {d2_,e5} - nn.JoinTable(2)
local d3_ = d2 - nn.ReLU(true) - nn.SpatialFullConvolution(ngf * 8 * 2, ngf * 8, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 8) - nn.Dropout(0.5)
-- input is (ngf * 8) x 8 x 8
local d3 = {d3_,e4} - nn.JoinTable(2)
local d4_ = d3 - nn.ReLU(true) - nn.SpatialFullConvolution(ngf * 8 * 2, ngf * 4, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 4)
-- input is (ngf * 8) x 16 x 16
local d4 = {d4_,e3} - nn.JoinTable(2)
local d5_ = d4 - nn.ReLU(true) - nn.SpatialFullConvolution(ngf * 4 * 2, ngf * 2, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf * 2)
-- input is (ngf * 4) x 32 x 32
local d5 = {d5_,e2} - nn.JoinTable(2)
local d6_ = d5 - nn.ReLU(true) - nn.SpatialFullConvolution(ngf * 2 * 2, ngf, 4, 4, 2, 2, 1, 1) - nn.SpatialBatchNormalization(ngf)
-- input is (ngf * 2) x 64 x 64
local d6 = {d6_,e1} - nn.JoinTable(2)
local d7 = d6 - nn.ReLU(true) - nn.SpatialFullConvolution(ngf * 2, output_nc, 4, 4, 2, 2, 1, 1)
-- input is (ngf) x128 x 128
local o1 = d7 - nn.Tanh()
netG = nn.gModule({e1},{o1})
--graph.dot(netG.fg,'netG')
return netG
end
-- definition of one ResNet block
local function resnetBlock(dim, padding_type)
convBlock = nn.Sequential()
local padding = 0
if padding_type == 'reflect' then
convBlock:add(nn.SpatialReflectionPadding(1, 1, 1, 1))
elseif padding_type == 'replicate' then
convBlock:add(nn.SpatialReplicatePadding(1, 1, 1, 1))
elseif padding_type == 'zero' then
padding = 1
end
convBlock:add(nn.SpatialConvolution(dim, dim, 3, 3, 1, 1, padding, padding))
convBlock:add(normalization(dim))
convBlock:add(nn.ReLU(true))
if padding_type == 'reflect' then
convBlock:add(nn.SpatialReflectionPadding(1, 1, 1, 1))
elseif padding_type == 'replicate' then
convBlock:add(nn.SpatialReplicatePadding(1, 1, 1, 1))
end
convBlock:add(nn.SpatialConvolution(dim, dim, 3, 3, 1, 1, padding, padding))
convBlock:add(normalization(dim))
local concat = nn.ConcatTable()
concat:add(convBlock)
concat:add(nn.Identity())
local resBlock = nn.Sequential()
resBlock:add(concat):add(nn.CAddTable())
return resBlock
end
-- generator with encoder, 6 ResNet blocks and decoder
function defineG_resnet_512(input_nc, output_nc, ngf)
local netG = nil
padding_type = 'reflect'
-- input is (nc) x 512 x 512
local e1_ = - nn.Identity()
local e1 = e1_ - nn.SpatialReflectionPadding(3, 3, 3, 3) - nn.SpatialConvolution(input_nc, ngf, 7, 7, 1, 1) - normalization(ngf)
-- input is (nc) x 512 x 512
local e2 = e1 - nn.ReLU(true) - nn.SpatialConvolution(ngf, ngf*2, 3, 3, 2, 2, 1, 1) - normalization(ngf*2)
-- input is (nc) x 256 x 256
local e3 = e2 - nn.ReLU(true) - nn.SpatialConvolution(ngf*2, ngf*4, 3, 3, 2, 2, 1, 1) - normalization(ngf*4)
-- input is (nc) x 128 x 128
local e4 = e3 - nn.ReLU(true) - nn.SpatialConvolution(ngf*4, ngf*8, 3, 3, 2, 2, 1, 1) - normalization(ngf*8)
-- input is (nc) x 64 x 64
local d1 = e4 - resnetBlock(ngf*8, padding_type) - resnetBlock(ngf*8, padding_type) - resnetBlock(ngf*8, padding_type) - resnetBlock(ngf*8, padding_type) - resnetBlock(ngf*8, padding_type) - resnetBlock(ngf*8, padding_type)
-- input is (nc) x 64 x 64
local d2 = d1 - nn.SpatialFullConvolution(ngf*8, ngf*4, 3, 3, 2, 2, 1, 1, 1, 1) - normalization(ngf*4)
-- input is (nc) x 128 x 128
local d3 = d2 - nn.ReLU(true) - nn.SpatialFullConvolution(ngf*4, ngf*2, 3, 3, 2, 2, 1, 1, 1, 1) - normalization(ngf*2)
-- input is (nc) x 256 x 256
local d4 = d3 - nn.ReLU(true) - nn.SpatialFullConvolution(ngf*2, ngf, 3, 3, 2, 2, 1, 1, 1, 1) - normalization(ngf)
-- input is (nc) x 512 x 512
local d5 = d4 - nn.ReLU(true) - nn.SpatialReflectionPadding(3, 3, 3, 3) - nn.SpatialConvolution(ngf, output_nc, 7, 7, 1, 1) - nn.Tanh()
netG = nn.gModule({e1_},{d5})
return netG
end
-- generator with encoder, 6 ResNet blocks, decoder and skip connections
function defineG_Uresnet_512(input_nc, output_nc, ngf)
local netG = nil
padding_type = 'reflect'
-- input is (nc) x 512 x 512
local e1_ = - nn.Identity()
local e1 = e1_ - nn.SpatialReflectionPadding(3, 3, 3, 3) - nn.SpatialConvolution(input_nc, ngf, 7, 7, 1, 1) - normalization(ngf)
-- input is (nc) x 512 x 512
local e2 = e1 - nn.ReLU(true) - nn.SpatialConvolution(ngf, ngf*2, 3, 3, 2, 2, 1, 1) - normalization(ngf*2)
-- input is (nc) x 256 x 256
local e3 = e2 - nn.ReLU(true) - nn.SpatialConvolution(ngf*2, ngf*4, 3, 3, 2, 2, 1, 1) - normalization(ngf*4)
-- input is (nc) x 128 x 128
local e4 = e3 - nn.ReLU(true) - nn.SpatialConvolution(ngf*4, ngf*8, 3, 3, 2, 2, 1, 1) - normalization(ngf*8)
-- input is (nc) x 64 x 64
local d1 = e4 - resnetBlock(ngf*8, padding_type) - resnetBlock(ngf*8, padding_type) - resnetBlock(ngf*8, padding_type) - resnetBlock(ngf*8, padding_type) - resnetBlock(ngf*8, padding_type) - resnetBlock(ngf*8, padding_type)
-- input is (nc) x 64 x 64
local d2_ = d1 - nn.SpatialFullConvolution(ngf*8, ngf*4, 3, 3, 2, 2, 1, 1, 1, 1) - normalization(ngf*4)
local d2 = {d2_,e3} - nn.JoinTable(2)
-- input is (nc) x 128 x 128
local d3_ = d2 - nn.ReLU(true) - nn.SpatialFullConvolution(ngf * 4 * 2, ngf*2, 3, 3, 2, 2, 1, 1, 1, 1) - normalization(ngf*2)
local d3 = {d3_,e2} - nn.JoinTable(2)
-- input is (nc) x 256 x 256
local d4_ = d3 - nn.ReLU(true) - nn.SpatialFullConvolution(ngf * 2 * 2, ngf, 3, 3, 2, 2, 1, 1, 1, 1) - normalization(ngf)
local d4 = {d4_,e1} - nn.JoinTable(2)
-- input is (nc) x 512 x 512
local d5 = d4 - nn.ReLU(true) - nn.SpatialReflectionPadding(3, 3, 3, 3) - nn.SpatialConvolution(ngf * 2, output_nc, 7, 7, 1, 1) - nn.Tanh()
netG = nn.gModule({e1_},{d5})
--graph.dot(netG.fg,'netG','uResNet')
--graph.dot(netG.fg,'netG')
return netG
end
-- generator with encoder, 6 ResNet blocks and decoder
function defineG_resnet_256(input_nc, output_nc, ngf)
local netG = nil
padding_type = 'reflect'
-- input is (nc) x 256 x 256
local e1_ = - nn.Identity()
local e1 = e1_ - nn.SpatialReflectionPadding(3, 3, 3, 3) - nn.SpatialConvolution(input_nc, ngf, 7, 7, 1, 1) - normalization(ngf)
-- input is (nc) x 256 x 256
local e2 = e1 - nn.ReLU(true) - nn.SpatialConvolution(ngf, ngf*2, 3, 3, 2, 2, 1, 1) - normalization(ngf*2)
-- input is (nc) x 128 x 128
local e3 = e2 - nn.ReLU(true) - nn.SpatialConvolution(ngf*2, ngf*4, 3, 3, 2, 2, 1, 1) - normalization(ngf*4)
-- input is (nc) x 64 x 64
local e4 = e3 - nn.ReLU(true) - nn.SpatialConvolution(ngf*4, ngf*8, 3, 3, 2, 2, 1, 1) - normalization(ngf*8)
-- input is (nc) x 32 x 32
local d1 = e4 - resnetBlock(ngf*8, padding_type) - resnetBlock(ngf*8, padding_type) - resnetBlock(ngf*8, padding_type) - resnetBlock(ngf*8, padding_type) - resnetBlock(ngf*8, padding_type) - resnetBlock(ngf*8, padding_type)
-- input is (nc) x 32 x 32
local d2 = d1 - nn.SpatialFullConvolution(ngf*8, ngf*4, 3, 3, 2, 2, 1, 1, 1, 1) - normalization(ngf*4)
-- input is (nc) x 64 x 64
local d3 = d2 - nn.ReLU(true) - nn.SpatialFullConvolution(ngf*4, ngf*2, 3, 3, 2, 2, 1, 1, 1, 1) - normalization(ngf*2)
-- input is (nc) x 128 x 128
local d4 = d3 - nn.ReLU(true) - nn.SpatialFullConvolution(ngf*2, ngf, 3, 3, 2, 2, 1, 1, 1, 1) - normalization(ngf)
-- input is (nc) x 256 x 256
local d5 = d4 - nn.SpatialReflectionPadding(3, 3, 3, 3) - nn.SpatialConvolution(ngf, output_nc, 7, 7, 1, 1) - nn.Tanh()
netG = nn.gModule({e1_},{d5})
return netG
end
-- discriminator definition
function defineD_basic(input_nc, output_nc, ndf)
n_layers = 3
return defineD_n_layers(input_nc, output_nc, ndf, n_layers)
end
-- discriminator at pixel level
function defineD_pixelGAN(input_nc, output_nc, ndf)
local netD = nn.Sequential()
-- input is (nc) x 256 x 256
netD:add(nn.SpatialConvolution(input_nc+output_nc, ndf, 1, 1, 1, 1, 0, 0))
netD:add(nn.LeakyReLU(0.2, true))
-- state size: (ndf) x 256 x 256
netD:add(nn.SpatialConvolution(ndf, ndf * 2, 1, 1, 1, 1, 0, 0))
netD:add(nn.SpatialBatchNormalization(ndf * 2)):add(nn.LeakyReLU(0.2, true))
-- state size: (ndf*2) x 256 x 256
netD:add(nn.SpatialConvolution(ndf * 2, 1, 1, 1, 1, 1, 0, 0))
-- state size: 1 x 256 x 256
netD:add(nn.Sigmoid())
-- state size: 1 x 256 x 256
return netD
end
-- if n=0, then use pixelGAN (rf=1)
-- else rf is 16 if n=1
-- 34 if n=2
-- 70 if n=3
-- 142 if n=4
-- 286 if n=5
-- 574 if n=6
function defineD_n_layers(input_nc, output_nc, ndf, n_layers)
if n_layers==0 then
return defineD_pixelGAN(input_nc, output_nc, ndf)
else
local netD = nn.Sequential()
-- input is (nc) x 256 x 256
netD:add(nn.SpatialConvolution(input_nc+output_nc, ndf, 4, 4, 2, 2, 1, 1))
netD:add(nn.LeakyReLU(0.2, true))
-- input is (nc) x 128 x 128
local nf_mult = 1
local nf_mult_prev = 1
for n = 1, n_layers - 1 do
nf_mult_prev = nf_mult
nf_mult = math.min(2^n,8)
netD:add(nn.SpatialConvolution(ndf * nf_mult_prev, ndf * nf_mult, 4, 4, 2, 2, 1, 1))
netD:add(nn.SpatialBatchNormalization(ndf * nf_mult)):add(nn.LeakyReLU(0.2, true))
end
-- input is (nc) x 32 x 32
-- state size: (ndf*M) x N x N
nf_mult_prev = nf_mult
nf_mult = math.min(2^n_layers,8)
netD:add(nn.SpatialConvolution(ndf * nf_mult_prev, ndf * nf_mult, 4, 4, 1, 1, 1, 1))
netD:add(nn.SpatialBatchNormalization(ndf * nf_mult)):add(nn.LeakyReLU(0.2, true))
-- state size: (ndf*M*2) x (N-1) x (N-1)
netD:add(nn.SpatialConvolution(ndf * nf_mult, 1, 4, 4, 1, 1, 1, 1))
-- state size: 1 x (N-2) x (N-2)
netD:add(nn.Sigmoid())
-- state size: 1 x (N-2) x (N-2)
return netD
end
end
-- ORB pairs descriptor pattern
local pattern = torch.Tensor({{8,-3, 9,5},--mean (0), correlation (0){
{4,2, 7,-12},--mean (1.12461e-05), correlation (0.0437584){
{-11,9, -8,2},--mean (3.37382e-05), correlation (0.0617409){
{7,-12, 12,-13},--mean (5.62303e-05), correlation (0.0636977){
{2,-13, 2,12},--mean (0.000134953), correlation (0.085099){
{1,-7, 1,6},--mean (0.000528565), correlation (0.0857175){
{-2,-10, -2,-4},--mean (0.0188821), correlation (0.0985774){
{-13,-13, -11,-8},--mean (0.0363135), correlation (0.0899616){
{-13,-3, -12,-9},--mean (0.121806), correlation (0.099849){
{10,4, 11,9},--mean (0.122065), correlation (0.093285){
{-13,-8, -8,-9},--mean (0.162787), correlation (0.0942748){
{-11,7, -9,12},--mean (0.21561), correlation (0.0974438){
{7,7, 12,6},--mean (0.160583), correlation (0.130064){
{-4,-5, -3,0},--mean (0.228171), correlation (0.132998){
{-13,2, -12,-3},--mean (0.00997526), correlation (0.145926){
{-9,0, -7,5},--mean (0.198234), correlation (0.143636){
{12,-6, 12,-1},--mean (0.0676226), correlation (0.16689){
{-3,6, -2,12},--mean (0.166847), correlation (0.171682){
{-6,-13, -4,-8},--mean (0.101215), correlation (0.179716){
{11,-13, 12,-8},--mean (0.200641), correlation (0.192279){
{4,7, 5,1},--mean (0.205106), correlation (0.186848){
{5,-3, 10,-3},--mean (0.234908), correlation (0.192319){
{3,-7, 6,12},--mean (0.0709964), correlation (0.210872){
{-8,-7, -6,-2},--mean (0.0939834), correlation (0.212589){
{-2,11, -1,-10},--mean (0.127778), correlation (0.20866){
{-13,12, -8,10},--mean (0.14783), correlation (0.206356){
{-7,3, -5,-3},--mean (0.182141), correlation (0.198942){
{-4,2, -3,7},--mean (0.188237), correlation (0.21384){
{-10,-12, -6,11},--mean (0.14865), correlation (0.23571){
{5,-12, 6,-7},--mean (0.222312), correlation (0.23324){
{5,-6, 7,-1},--mean (0.229082), correlation (0.23389){
{1,0, 4,-5},--mean (0.241577), correlation (0.215286){
{9,11, 11,-13},--mean (0.00338507), correlation (0.251373){
{4,7, 4,12},--mean (0.131005), correlation (0.257622){
{2,-1, 4,4},--mean (0.152755), correlation (0.255205){
{-4,-12, -2,7},--mean (0.182771), correlation (0.244867){
{-8,-5, -7,-10},--mean (0.186898), correlation (0.23901){
{4,11, 9,12},--mean (0.226226), correlation (0.258255){
{0,-8, 1,-13},--mean (0.0897886), correlation (0.274827){
{-13,-2, -8,2},--mean (0.148774), correlation (0.28065){
{-3,-2, -2,3},--mean (0.153048), correlation (0.283063){
{-6,9, -4,-9},--mean (0.169523), correlation (0.278248){
{8,12, 10,7},--mean (0.225337), correlation (0.282851){
{0,9, 1,3},--mean (0.226687), correlation (0.278734){
{7,-5, 11,-10},--mean (0.00693882), correlation (0.305161){
{-13,-6, -11,0},--mean (0.0227283), correlation (0.300181){
{10,7, 12,1},--mean (0.125517), correlation (0.31089){
{-6,-3, -6,12},--mean (0.131748), correlation (0.312779){
{10,-9, 12,-4},--mean (0.144827), correlation (0.292797){
{-13,8, -8,-12},--mean (0.149202), correlation (0.308918){
{-13,0, -8,-4},--mean (0.160909), correlation (0.310013){
{3,3, 7,8},--mean (0.177755), correlation (0.309394){
{5,7, 10,-7},--mean (0.212337), correlation (0.310315){
{-1,7, 1,-12},--mean (0.214429), correlation (0.311933){
{3,-10, 5,6},--mean (0.235807), correlation (0.313104){
{2,-4, 3,-10},--mean (0.00494827), correlation (0.344948){
{-13,0, -13,5},--mean (0.0549145), correlation (0.344675){
{-13,-7, -12,12},--mean (0.103385), correlation (0.342715){
{-13,3, -11,8},--mean (0.134222), correlation (0.322922){
{-7,12, -4,7},--mean (0.153284), correlation (0.337061){
{6,-10, 12,8},--mean (0.154881), correlation (0.329257){
{-9,-1, -7,-6},--mean (0.200967), correlation (0.33312){
{-2,-5, 0,12},--mean (0.201518), correlation (0.340635){
{-12,5, -7,5},--mean (0.207805), correlation (0.335631){
{3,-10, 8,-13},--mean (0.224438), correlation (0.34504){
{-7,-7, -4,5},--mean (0.239361), correlation (0.338053){
{-3,-2, -1,-7},--mean (0.240744), correlation (0.344322){
{2,9, 5,-11},--mean (0.242949), correlation (0.34145){
{-11,-13, -5,-13},--mean (0.244028), correlation (0.336861){
{-1,6, 0,-1},--mean (0.247571), correlation (0.343684){
{5,-3, 5,2},--mean (0.000697256), correlation (0.357265){
{-4,-13, -4,12},--mean (0.00213675), correlation (0.373827){
{-9,-6, -9,6},--mean (0.0126856), correlation (0.373938){
{-12,-10, -8,-4},--mean (0.0152497), correlation (0.364237){
{10,2, 12,-3},--mean (0.0299933), correlation (0.345292){
{7,12, 12,12},--mean (0.0307242), correlation (0.366299){
{-7,-13, -6,5},--mean (0.0534975), correlation (0.368357){
{-4,9, -3,4},--mean (0.099865), correlation (0.372276){
{7,-1, 12,2},--mean (0.117083), correlation (0.364529){
{-7,6, -5,1},--mean (0.126125), correlation (0.369606){
{-13,11, -12,5},--mean (0.130364), correlation (0.358502){
{-3,7, -2,-6},--mean (0.131691), correlation (0.375531){
{7,-8, 12,-7},--mean (0.160166), correlation (0.379508){
{-13,-7, -11,-12},--mean (0.167848), correlation (0.353343){
{1,-3, 12,12},--mean (0.183378), correlation (0.371916){
{2,-6, 3,0},--mean (0.228711), correlation (0.371761){
{-4,3, -2,-13},--mean (0.247211), correlation (0.364063){
{-1,-13, 1,9},--mean (0.249325), correlation (0.378139){
{7,1, 8,-6},--mean (0.000652272), correlation (0.411682){
{1,-1, 3,12},--mean (0.00248538), correlation (0.392988){
{9,1, 12,6},--mean (0.0206815), correlation (0.386106){
{-1,-9, -1,3},--mean (0.0364485), correlation (0.410752){
{-13,-13, -10,5},--mean (0.0376068), correlation (0.398374){
{7,7, 10,12},--mean (0.0424202), correlation (0.405663){
{12,-5, 12,9},--mean (0.0942645), correlation (0.410422){
{6,3, 7,11},--mean (0.1074), correlation (0.413224){
{5,-13, 6,10},--mean (0.109256), correlation (0.408646){
{2,-12, 2,3},--mean (0.131691), correlation (0.416076){
{3,8, 4,-6},--mean (0.165081), correlation (0.417569){
{2,6, 12,-13},--mean (0.171874), correlation (0.408471){
{9,-12, 10,3},--mean (0.175146), correlation (0.41296){
{-8,4, -7,9},--mean (0.183682), correlation (0.402956){
{-11,12, -4,-6},--mean (0.184672), correlation (0.416125){
{1,12, 2,-8},--mean (0.191487), correlation (0.386696){
{6,-9, 7,-4},--mean (0.192668), correlation (0.394771){
{2,3, 3,-2},--mean (0.200157), correlation (0.408303){
{6,3, 11,0},--mean (0.204588), correlation (0.411762){
{3,-3, 8,-8},--mean (0.205904), correlation (0.416294){
{7,8, 9,3},--mean (0.213237), correlation (0.409306){
{-11,-5, -6,-4},--mean (0.243444), correlation (0.395069){
{-10,11, -5,10},--mean (0.247672), correlation (0.413392){
{-5,-8, -3,12},--mean (0.24774), correlation (0.411416){
{-10,5, -9,0},--mean (0.00213675), correlation (0.454003){
{8,-1, 12,-6},--mean (0.0293635), correlation (0.455368){
{4,-6, 6,-11},--mean (0.0404971), correlation (0.457393){
{-10,12, -8,7},--mean (0.0481107), correlation (0.448364){
{4,-2, 6,7},--mean (0.050641), correlation (0.455019){
{-2,0, -2,12},--mean (0.0525978), correlation (0.44338){
{-5,-8, -5,2},--mean (0.0629667), correlation (0.457096){
{7,-6, 10,12},--mean (0.0653846), correlation (0.445623){
{-9,-13, -8,-8},--mean (0.0858749), correlation (0.449789){
{-5,-13, -5,-2},--mean (0.122402), correlation (0.450201){
{8,-8, 9,-13},--mean (0.125416), correlation (0.453224){
{-9,-11, -9,0},--mean (0.130128), correlation (0.458724){
{1,-8, 1,-2},--mean (0.132467), correlation (0.440133){
{7,-4, 9,1},--mean (0.132692), correlation (0.454){
{-2,1, -1,-4},--mean (0.135695), correlation (0.455739){
{11,-6, 12,-11},--mean (0.142904), correlation (0.446114){
{-12,-9, -6,4},--mean (0.146165), correlation (0.451473){
{3,7, 7,12},--mean (0.147627), correlation (0.456643){
{5,5, 10,8},--mean (0.152901), correlation (0.455036){
{0,-4, 2,8},--mean (0.167083), correlation (0.459315){
{-9,12, -5,-13},--mean (0.173234), correlation (0.454706){
{0,7, 2,12},--mean (0.18312), correlation (0.433855){
{-1,2, 1,7},--mean (0.185504), correlation (0.443838){
{5,11, 7,-9},--mean (0.185706), correlation (0.451123){
{3,5, 6,-8},--mean (0.188968), correlation (0.455808){
{-13,-4, -8,9},--mean (0.191667), correlation (0.459128){
{-5,9, -3,-3},--mean (0.193196), correlation (0.458364){
{-4,-7, -3,-12},--mean (0.196536), correlation (0.455782){
{6,5, 8,0},--mean (0.1972), correlation (0.450481){
{-7,6, -6,12},--mean (0.199438), correlation (0.458156){
{-13,6, -5,-2},--mean (0.211224), correlation (0.449548){
{1,-10, 3,10},--mean (0.211718), correlation (0.440606){
{4,1, 8,-4},--mean (0.213034), correlation (0.443177){
{-2,-2, 2,-13},--mean (0.234334), correlation (0.455304){
{2,-12, 12,12},--mean (0.235684), correlation (0.443436){
{-2,-13, 0,-6},--mean (0.237674), correlation (0.452525){
{4,1, 9,3},--mean (0.23962), correlation (0.444824){
{-6,-10, -3,-5},--mean (0.248459), correlation (0.439621){
{-3,-13, -1,1},--mean (0.249505), correlation (0.456666){
{7,5, 12,-11},--mean (0.00119208), correlation (0.495466){
{4,-2, 5,-7},--mean (0.00372245), correlation (0.484214){
{-13,9, -9,-5},--mean (0.00741116), correlation (0.499854){
{7,1, 8,6},--mean (0.0208952), correlation (0.499773){
{7,-8, 7,6},--mean (0.0220085), correlation (0.501609){
{-7,-4, -7,1},--mean (0.0233806), correlation (0.496568){
{-8,11, -7,-8},--mean (0.0236505), correlation (0.489719){
{-13,6, -12,-8},--mean (0.0268781), correlation (0.503487){
{2,4, 3,9},--mean (0.0323324), correlation (0.501938){
{10,-5, 12,3},--mean (0.0399235), correlation (0.494029){
{-6,-5, -6,7},--mean (0.0420153), correlation (0.486579){
{8,-3, 9,-8},--mean (0.0548021), correlation (0.484237){
{2,-12, 2,8},--mean (0.0616622), correlation (0.496642){
{-11,-2, -10,3},--mean (0.0627755), correlation (0.498563){
{-12,-13, -7,-9},--mean (0.0829622), correlation (0.495491){
{-11,0, -10,-5},--mean (0.0843342), correlation (0.487146){
{5,-3, 11,8},--mean (0.0929937), correlation (0.502315){
{-2,-13, -1,12},--mean (0.113327), correlation (0.48941){
{-1,-8, 0,9},--mean (0.132119), correlation (0.467268){
{-13,-11, -12,-5},--mean (0.136269), correlation (0.498771){
{-10,-2, -10,11},--mean (0.142173), correlation (0.498714){
{-3,9, -2,-13},--mean (0.144141), correlation (0.491973){
{2,-3, 3,2},--mean (0.14892), correlation (0.500782){
{-9,-13, -4,0},--mean (0.150371), correlation (0.498211){
{-4,6, -3,-10},--mean (0.152159), correlation (0.495547){
{-4,12, -2,-7},--mean (0.156152), correlation (0.496925){
{-6,-11, -4,9},--mean (0.15749), correlation (0.499222){
{6,-3, 6,11},--mean (0.159211), correlation (0.503821){
{-13,11, -5,5},--mean (0.162427), correlation (0.501907){
{11,11, 12,6},--mean (0.16652), correlation (0.497632){
{7,-5, 12,-2},--mean (0.169141), correlation (0.484474){
{-1,12, 0,7},--mean (0.169456), correlation (0.495339){
{-4,-8, -3,-2},--mean (0.171457), correlation (0.487251){
{-7,1, -6,7},--mean (0.175), correlation (0.500024){
{-13,-12, -8,-13},--mean (0.175866), correlation (0.497523){
{-7,-2, -6,-8},--mean (0.178273), correlation (0.501854){
{-8,5, -6,-9},--mean (0.181107), correlation (0.494888){
{-5,-1, -4,5},--mean (0.190227), correlation (0.482557){
{-13,7, -8,10},--mean (0.196739), correlation (0.496503){
{1,5, 5,-13},--mean (0.19973), correlation (0.499759){
{1,0, 10,-13},--mean (0.204465), correlation (0.49873){
{9,12, 10,-1},--mean (0.209334), correlation (0.49063){
{5,-8, 10,-9},--mean (0.211134), correlation (0.503011){
{-1,11, 1,-13},--mean (0.212), correlation (0.499414){
{-9,-3, -6,2},--mean (0.212168), correlation (0.480739){
{-1,-10, 1,12},--mean (0.212731), correlation (0.502523){
{-13,1, -8,-10},--mean (0.21327), correlation (0.489786){
{8,-11, 10,-6},--mean (0.214159), correlation (0.488246){
{2,-13, 3,-6},--mean (0.216993), correlation (0.50287){
{7,-13, 12,-9},--mean (0.223639), correlation (0.470502){
{-10,-10, -5,-7},--mean (0.224089), correlation (0.500852){
{-10,-8, -8,-13},--mean (0.228666), correlation (0.502629){
{4,-6, 8,5},--mean (0.22906), correlation (0.498305){
{3,12, 8,-13},--mean (0.233378), correlation (0.503825){
{-4,2, -3,-3},--mean (0.234323), correlation (0.476692){
{5,-13, 10,-12},--mean (0.236392), correlation (0.475462){
{4,-13, 5,-1},--mean (0.236842), correlation (0.504132){
{-9,9, -4,3},--mean (0.236977), correlation (0.497739){
{0,3, 3,-9},--mean (0.24314), correlation (0.499398){
{-12,1, -6,1},--mean (0.243297), correlation (0.489447){
{3,2, 4,-8},--mean (0.00155196), correlation (0.553496){
{-10,-10, -10,9},--mean (0.00239541), correlation (0.54297){
{8,-13, 12,12},--mean (0.0034413), correlation (0.544361){
{-8,-12, -6,-5},--mean (0.003565), correlation (0.551225){
{2,2, 3,7},--mean (0.00835583), correlation (0.55285){
{10,6, 11,-8},--mean (0.00885065), correlation (0.540913){
{6,8, 8,-12},--mean (0.0101552), correlation (0.551085){
{-7,10, -6,5},--mean (0.0102227), correlation (0.533635){
{-3,-9, -3,9},--mean (0.0110211), correlation (0.543121){
{-1,-13, -1,5},--mean (0.0113473), correlation (0.550173){
{-3,-7, -3,4},--mean (0.0140913), correlation (0.554774){
{-8,-2, -8,3},--mean (0.017049), correlation (0.55461){
{4,2, 12,12},--mean (0.01778), correlation (0.546921){
{2,-5, 3,11},--mean (0.0224022), correlation (0.549667){
{6,-9, 11,-13},--mean (0.029161), correlation (0.546295){
{3,-1, 7,12},--mean (0.0303081), correlation (0.548599){
{11,-1, 12,4},--mean (0.0355151), correlation (0.523943){
{-3,0, -3,6},--mean (0.0417904), correlation (0.543395){
{4,-11, 4,12},--mean (0.0487292), correlation (0.542818){
{2,-4, 2,1},--mean (0.0575124), correlation (0.554888){
{-10,-6, -8,1},--mean (0.0594242), correlation (0.544026){
{-13,7, -11,1},--mean (0.0597391), correlation (0.550524){
{-13,12, -11,-13},--mean (0.0608974), correlation (0.55383){
{6,0, 11,-13},--mean (0.065126), correlation (0.552006){
{0,-1, 1,4},--mean (0.074224), correlation (0.546372){
{-13,3, -9,-2},--mean (0.0808592), correlation (0.554875){
{-9,8, -6,-3},--mean (0.0883378), correlation (0.551178){
{-13,-6, -8,-2},--mean (0.0901035), correlation (0.548446){
{5,-9, 8,10},--mean (0.0949843), correlation (0.554694){
{2,7, 3,-9},--mean (0.0994152), correlation (0.550979){
{-1,-6, -1,-1},--mean (0.10045), correlation (0.552714){
{9,5, 11,-2},--mean (0.100686), correlation (0.552594){
{11,-3, 12,-8},--mean (0.101091), correlation (0.532394){
{3,0, 3,5},--mean (0.101147), correlation (0.525576){
{-1,4, 0,10},--mean (0.105263), correlation (0.531498){
{3,-6, 4,5},--mean (0.110785), correlation (0.540491){
{-13,0, -10,5},--mean (0.112798), correlation (0.536582){
{5,8, 12,11},--mean (0.114181), correlation (0.555793){
{8,9, 9,-6},--mean (0.117431), correlation (0.553763){
{7,-4, 8,-12},--mean (0.118522), correlation (0.553452){
{-10,4, -10,9},--mean (0.12094), correlation (0.554785){
{7,3, 12,4},--mean (0.122582), correlation (0.555825){
{9,-7, 10,-2},--mean (0.124978), correlation (0.549846){
{7,0, 12,-2},--mean (0.127002), correlation (0.537452){
{-1,-6, 0,-11}})--mean (0.127148), correlation (0.547401)
-- this function defines the FAST detection kernels for scale = 1.2
function FASTKernels()
local kernel_stack = torch.Tensor(16, 1, 7, 7)
local kernel1 = torch.Tensor(7,7):zero()
kernel1[4][4] = 1
kernel1[1][3] = -1/12
kernel1[1][4] = -1/12
kernel1[1][5] = -1/12
kernel1[2][6] = -1/12
kernel1[3][7] = -1/12
kernel1[4][7] = -1/12
kernel1[5][7] = -1/12
kernel1[6][6] = -1/12
kernel1[7][5] = -1/12
kernel1[7][4] = -1/12
kernel1[7][3] = -1/12
kernel1[6][2] = -1/12
kernel_stack[1][1] = kernel1
local kernel2 = torch.Tensor(7,7):zero()
kernel2[4][4] = 1
kernel2[1][4] = -1/12
kernel2[1][5] = -1/12
kernel2[2][6] = -1/12
kernel2[3][7] = -1/12
kernel2[4][7] = -1/12
kernel2[5][7] = -1/12
kernel2[6][6] = -1/12
kernel2[7][5] = -1/12
kernel2[7][4] = -1/12
kernel2[7][3] = -1/12
kernel2[6][2] = -1/12
kernel2[5][1] = -1/12
kernel_stack[2][1] = kernel2
local kernel3 = torch.Tensor(7,7):zero()
kernel3[4][4] = 1
kernel3[1][5] = -1/12
kernel3[2][6] = -1/12
kernel3[3][7] = -1/12
kernel3[4][7] = -1/12
kernel3[5][7] = -1/12
kernel3[6][6] = -1/12
kernel3[7][5] = -1/12
kernel3[7][4] = -1/12
kernel3[7][3] = -1/12
kernel3[6][2] = -1/12
kernel3[5][1] = -1/12
kernel3[4][1] = -1/12
kernel_stack[3][1] = kernel3
local kernel4 = torch.Tensor(7,7):zero()
kernel4[4][4] = 1
kernel4[2][6] = -1/12
kernel4[3][7] = -1/12
kernel4[4][7] = -1/12
kernel4[5][7] = -1/12
kernel4[6][6] = -1/12
kernel4[7][5] = -1/12
kernel4[7][4] = -1/12
kernel4[7][3] = -1/12
kernel4[6][2] = -1/12
kernel4[5][1] = -1/12
kernel4[4][1] = -1/12
kernel4[3][1] = -1/12
kernel_stack[4][1] = kernel4
local kernel5 = torch.Tensor(7,7):zero()
kernel5[4][4] = 1
kernel5[3][7] = -1/12
kernel5[4][7] = -1/12
kernel5[5][7] = -1/12
kernel5[6][6] = -1/12
kernel5[7][5] = -1/12
kernel5[7][4] = -1/12
kernel5[7][3] = -1/12
kernel5[6][2] = -1/12
kernel5[5][1] = -1/12
kernel5[4][1] = -1/12
kernel5[3][1] = -1/12
kernel5[2][2] = -1/12
kernel_stack[5][1] = kernel5
local kernel6 = torch.Tensor(7,7):zero()
kernel6[4][4] = 1
kernel6[4][7] = -1/12
kernel6[5][7] = -1/12
kernel6[6][6] = -1/12
kernel6[7][5] = -1/12
kernel6[7][4] = -1/12
kernel6[7][3] = -1/12
kernel6[6][2] = -1/12
kernel6[5][1] = -1/12
kernel6[4][1] = -1/12
kernel6[3][1] = -1/12
kernel6[2][2] = -1/12
kernel6[1][3] = -1/12
kernel_stack[6][1] = kernel6
local kernel7 = torch.Tensor(7,7):zero()
kernel7[4][4] = 1
kernel7[5][7] = -1/12
kernel7[6][6] = -1/12
kernel7[7][5] = -1/12
kernel7[7][4] = -1/12
kernel7[7][3] = -1/12
kernel7[6][2] = -1/12
kernel7[5][1] = -1/12
kernel7[4][1] = -1/12
kernel7[3][1] = -1/12
kernel7[2][2] = -1/12
kernel7[1][3] = -1/12
kernel7[1][4] = -1/12
kernel_stack[7][1] = kernel7
local kernel8 = torch.Tensor(7,7):zero()
kernel8[4][4] = 1
kernel8[6][6] = -1/12
kernel8[7][5] = -1/12
kernel8[7][4] = -1/12
kernel8[7][3] = -1/12
kernel8[6][2] = -1/12
kernel8[5][1] = -1/12
kernel8[4][1] = -1/12
kernel8[3][1] = -1/12
kernel8[2][2] = -1/12
kernel8[1][3] = -1/12
kernel8[1][4] = -1/12
kernel8[1][5] = -1/12
kernel_stack[8][1] = kernel8
local kernel9 = torch.Tensor(7,7):zero()
kernel9[4][4] = 1
kernel9[7][5] = -1/12
kernel9[7][4] = -1/12
kernel9[7][3] = -1/12
kernel9[6][2] = -1/12