forked from odegeasslbc/Progressive-GAN-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
progan_modules.py
250 lines (187 loc) · 8.78 KB
/
progan_modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import torch
from torch import nn
from torch.nn import functional as F
from math import sqrt
class EqualLR:
def __init__(self, name):
self.name = name
def compute_weight(self, module):
weight = getattr(module, self.name + '_orig')
fan_in = weight.data.size(1) * weight.data[0][0].numel()
return weight * sqrt(2 / fan_in)
@staticmethod
def apply(module, name):
fn = EqualLR(name)
weight = getattr(module, name)
del module._parameters[name]
module.register_parameter(name + '_orig', nn.Parameter(weight.data))
module.register_forward_pre_hook(fn)
return fn
def __call__(self, module, input):
weight = self.compute_weight(module)
setattr(module, self.name, weight)
def equal_lr(module, name='weight'):
EqualLR.apply(module, name)
return module
class PixelNorm(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input):
return input / torch.sqrt(torch.mean(input ** 2, dim=1, keepdim=True)
+ 1e-8)
class EqualConv2d(nn.Module):
def __init__(self, *args, **kwargs):
super().__init__()
conv = nn.Conv2d(*args, **kwargs)
conv.weight.data.normal_()
conv.bias.data.zero_()
self.conv = equal_lr(conv)
def forward(self, input):
return self.conv(input)
class EqualConvTranspose2d(nn.Module):
### additional module for OOGAN usage
def __init__(self, *args, **kwargs):
super().__init__()
conv = nn.ConvTranspose2d(*args, **kwargs)
conv.weight.data.normal_()
conv.bias.data.zero_()
self.conv = equal_lr(conv)
def forward(self, input):
return self.conv(input)
class EqualLinear(nn.Module):
def __init__(self, in_dim, out_dim):
super().__init__()
linear = nn.Linear(in_dim, out_dim)
linear.weight.data.normal_()
linear.bias.data.zero_()
self.linear = equal_lr(linear)
def forward(self, input):
return self.linear(input)
class ConvBlock(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, padding, kernel_size2=None, padding2=None, pixel_norm=True):
super().__init__()
pad1 = padding
pad2 = padding
if padding2 is not None:
pad2 = padding2
kernel1 = kernel_size
kernel2 = kernel_size
if kernel_size2 is not None:
kernel2 = kernel_size2
convs = [EqualConv2d(in_channel, out_channel, kernel1, padding=pad1)]
if pixel_norm:
convs.append(PixelNorm())
convs.append(nn.LeakyReLU(0.1))
convs.append(EqualConv2d(out_channel, out_channel, kernel2, padding=pad2))
if pixel_norm:
convs.append(PixelNorm())
convs.append(nn.LeakyReLU(0.1))
self.conv = nn.Sequential(*convs)
def forward(self, input):
out = self.conv(input)
return out
def upscale(feat):
return F.interpolate(feat, scale_factor=2, mode='bilinear', align_corners=False)
class Generator(nn.Module):
def __init__(self, input_code_dim=128, in_channel=128, pixel_norm=True, tanh=True):
super().__init__()
self.input_dim = input_code_dim
self.tanh = tanh
self.input_layer = nn.Sequential(
EqualConvTranspose2d(input_code_dim, in_channel, 4, 1, 0),
PixelNorm(),
nn.LeakyReLU(0.1))
self.progression_4 = ConvBlock(in_channel, in_channel, 3, 1, pixel_norm=pixel_norm)
self.progression_8 = ConvBlock(in_channel, in_channel, 3, 1, pixel_norm=pixel_norm)
self.progression_16 = ConvBlock(in_channel, in_channel, 3, 1, pixel_norm=pixel_norm)
self.progression_32 = ConvBlock(in_channel, in_channel, 3, 1, pixel_norm=pixel_norm)
self.progression_64 = ConvBlock(in_channel, in_channel//2, 3, 1, pixel_norm=pixel_norm)
self.progression_128 = ConvBlock(in_channel//2, in_channel//4, 3, 1, pixel_norm=pixel_norm)
self.progression_256 = ConvBlock(in_channel//4, in_channel//4, 3, 1, pixel_norm=pixel_norm)
self.to_rgb_8 = EqualConv2d(in_channel, 3, 1)
self.to_rgb_16 = EqualConv2d(in_channel, 3, 1)
self.to_rgb_32 = EqualConv2d(in_channel, 3, 1)
self.to_rgb_64 = EqualConv2d(in_channel//2, 3, 1)
self.to_rgb_128 = EqualConv2d(in_channel//4, 3, 1)
self.to_rgb_256 = EqualConv2d(in_channel//4, 3, 1)
self.max_step = 6
def progress(self, feat, module):
out = F.interpolate(feat, scale_factor=2, mode='bilinear', align_corners=False)
out = module(out)
return out
def output(self, feat1, feat2, module1, module2, alpha):
if 0 <= alpha < 1:
skip_rgb = upscale(module1(feat1))
out = (1-alpha)*skip_rgb + alpha*module2(feat2)
else:
out = module2(feat2)
if self.tanh:
return torch.tanh(out)
return out
def forward(self, input, step=0, alpha=-1):
if step > self.max_step:
step = self.max_step
out_4 = self.input_layer(input.view(-1, self.input_dim, 1, 1))
out_4 = self.progression_4(out_4)
out_8 = self.progress(out_4, self.progression_8)
if step==1:
if self.tanh:
return torch.tanh(self.to_rgb_8(out_8))
return self.to_rgb_8(out_8)
out_16 = self.progress(out_8, self.progression_16)
if step==2:
return self.output( out_8, out_16, self.to_rgb_8, self.to_rgb_16, alpha )
out_32 = self.progress(out_16, self.progression_32)
if step==3:
return self.output( out_16, out_32, self.to_rgb_16, self.to_rgb_32, alpha )
out_64 = self.progress(out_32, self.progression_64)
if step==4:
return self.output( out_32, out_64, self.to_rgb_32, self.to_rgb_64, alpha )
out_128 = self.progress(out_64, self.progression_128)
if step==5:
return self.output( out_64, out_128, self.to_rgb_64, self.to_rgb_128, alpha )
out_256 = self.progress(out_128, self.progression_256)
if step==6:
return self.output( out_128, out_256, self.to_rgb_128, self.to_rgb_256, alpha )
class Discriminator(nn.Module):
def __init__(self, feat_dim=128):
super().__init__()
self.progression = nn.ModuleList([ConvBlock(feat_dim//4, feat_dim//4, 3, 1),
ConvBlock(feat_dim//4, feat_dim//2, 3, 1),
ConvBlock(feat_dim//2, feat_dim, 3, 1),
ConvBlock(feat_dim, feat_dim, 3, 1),
ConvBlock(feat_dim, feat_dim, 3, 1),
ConvBlock(feat_dim, feat_dim, 3, 1),
ConvBlock(feat_dim+1, feat_dim, 3, 1, 4, 0)])
self.from_rgb = nn.ModuleList([EqualConv2d(3, feat_dim//4, 1),
EqualConv2d(3, feat_dim//4, 1),
EqualConv2d(3, feat_dim//2, 1),
EqualConv2d(3, feat_dim, 1),
EqualConv2d(3, feat_dim, 1),
EqualConv2d(3, feat_dim, 1),
EqualConv2d(3, feat_dim, 1)])
self.n_layer = len(self.progression)
self.linear = EqualLinear(feat_dim, 1)
def forward(self, input, step=0, alpha=-1):
for i in range(step, -1, -1):
index = self.n_layer - i - 1
if i == step:
out = self.from_rgb[index](input)
if i == 0:
out_std = torch.sqrt(out.var(0, unbiased=False) + 1e-8)
mean_std = out_std.mean()
mean_std = mean_std.expand(out.size(0), 1, 4, 4)
out = torch.cat([out, mean_std], 1)
out = self.progression[index](out)
if i > 0:
# out = F.avg_pool2d(out, 2)
out = F.interpolate(out, scale_factor=0.5, mode='bilinear', align_corners=False)
if i == step and 0 <= alpha < 1:
# skip_rgb = F.avg_pool2d(input, 2)
skip_rgb = F.interpolate(input, scale_factor=0.5, mode='bilinear', align_corners=False)
skip_rgb = self.from_rgb[index + 1](skip_rgb)
out = (1 - alpha) * skip_rgb + alpha * out
out = out.squeeze(2).squeeze(2)
# print(input.size(), out.size(), step)
out = self.linear(out)
return out