-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpracticalWork2_avecPenteEtFrottement.py
318 lines (276 loc) · 15.5 KB
/
practicalWork2_avecPenteEtFrottement.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
# Code to solve numerically an hyperbolic equation (dh/dt + lambda dh/dx = 0) with finite difference method
# Solve numerically the case of a perturbation with forward-time backward-space numerical scheme and periodic boundary
# conditions
# Plot the results as an animated plot over time
# Written by Raphael MAURIN ([email protected]) after a document of Pierre-Yves LAGREE: Resolution numerique des
# equations de Saint-Venant, mise en oeuvre en volumes finis par un solveur de Riemann bien balance
# 10/05/2022
####################################
# READ ME
# To make the script work, you should prescribed an option to True for the Flux you want to use (naive, Lax-Friedrich,
# or Rusanov) and for the configuration you want to consider (dam break or perturbation)
# Structure of the script:
# 1. Options & parameters of the simulation (to set)
# 2. Prescribe initial configuration
# 3. Loop over time for the equation resolution
# ... 3.1 Evaluate the flux function at every half spatial step xi-1/2
# ... 3.2 Evaluate h^{n+1} and q^{n+1} from the flux function
# ... 3.3 Set the boundary conditions for the next time step
# 4. Animated plot of the results (h,q) as a function of time
# Import useful libraries
import numpy as np # To deal with vector and matrix
import matplotlib.pyplot as plt # To plot figures
from math import * # Import mathematic library
import matplotlib.animation as animation # Import libraries to make an animated plot
from matplotlib.lines import Line2D # Import libraries to make an animated plot
from interpreteurtxt import Param
############################################################################################################
# 1. Options & parameters of the simulation
############################################################################################################
def launch():
slope_term_calculation = Param["slope"]
friction_term_calculation = Param["frict"]
ks = 50. # Strickler coefficient
# _____________ TO SET _____________
# Options for the flux for the numerical resolution, see what it modifies in the temporal loop below
naive_flux = (Param["flux"] == "Naif") # Naive formulation of the flux (unstable) Xflat Xstep Xperturbation Xdam
lax_friedrich_flux = (Param["flux"] == "LaxFr") # Lax-Friedrich formulation of the flux (stable but diffusion)
rusanov_flux = (Param["flux"] == "Rusanov") # Rusanov formulation of the flux
# _____________ TO SET _____________
# Options for the initial condition
perturbation = (Param["cond_ini"] == "Perturb") # a corriger
dam_break = (Param["cond_ini"] == "Dam") # a corriger
flat = (Param["cond_ini"] == "Flat")
step = (Param["cond_ini"] == "Step")
# _____________ TO SET_____________
# Options for the boundary conditions
periodic_bc = (Param["cond_bound"] == "Period") # Periodic boundary conditions, for both h and q
dirichlet_bc = (Param["cond_bound"] == "Dirich") # Dirichlet boundary conditions, for both h and q, on both sides
neumann_bc = (Param["cond_bound"] == "Neum") # Neumann boundary conditions, for both h and q, on both sides
mixed_bc = (Param["cond_bound"] == "Mixed") # Mixed boundary conditions, to set by the user at the end of section 3
########################################################################
# CHARACTERISTICS OF THE EQUATIONS AND OF THE NUMERICAL RESOLUTION
# Size of the domain and time simulated
t_simulated = Param["temps_simulation"] # Simulated time, in s
length = Param["longueur"] # Simulated length, in m
# Spatial and temporal resolution
dt = Param["pas de temps"] # Time step, in s
dx = Param["pas spatial"] # Grid size, in m
# Gravity
g = 9.81
########################################################################
# Initialization of the (time & space) discretized vector h
# Size of the spatio-temporal domain and initialization
Nt = int(t_simulated / dt) # Number of time step
Nx = int(length / dx) # Number of grid element
h = np.zeros(
[Nt, Nx + 2]) # Initialize the water depth matrix to 0, h[t,x] = water depth at time step t and grid point x
q = np.zeros(
[Nt, Nx + 2]) # Initialize the water discharge matrix to 0,q[t,x]=water depth at timestep t and grid point x
X = np.linspace(0, length, Nx) # Define the spatial mesh
slopeTerm = 0.
frictionTerm = 0.
########################################################################
# Prescribe the bottom
Z = np.array([0 for i in range((Nx+2)//4)] + [i/((Nx+2)//4) for i in range((Nx+2)//4)] + [1 - i/((Nx+2)//4) for i in range((Nx+2)//4)] + [0 for i in range((Nx+2)//4+(Nx+2)%4)])
########################################################################
# Test on the options, to be sure that only one has been set (not important)
if (naive_flux and lax_friedrich_flux) or (rusanov_flux and lax_friedrich_flux) or (naive_flux and rusanov_flux):
print('There is a problem, too many options have been set for the flux\n')
exit()
elif not naive_flux and not lax_friedrich_flux and not rusanov_flux:
print('There is a problem, no option has been set for the flux\n')
exit()
if perturbation and dam_break:
print('There is a problem, two options have been given for the initial conditions\n')
exit()
elif not perturbation and not dam_break and not flat and not step:
print('There is a problem, no option has been given for the initial conditions\n')
exit()
if dam_break and naive_flux: # For a dam break problem, the naive flux
# formulation leads to a very quick instability,
# restrict the number of time step then.
Nt = 60
############################################################################################################
# 2. Prescribe initial configuration
############################################################################################################
href = 1. # Typical water depth considered
# qref = 0. # Reference water discharge (per unit width)
# Impose a Fr number and a given according discharge
Fr = 1.2 # Fr = U/sqrt(gh) = q/sqrt(gh^3) --> q = Fr sqrt(gh^3)
qref = Fr * sqrt(g * href ** 3)
if perturbation:
# Take it as a gaussian perturbation over the equilibrium state hn for example
# (we could imagine any initial condition, depending on the configuration/problem we study)
A = href / 5. # Amplitude of the perturbation
x_a = length / 2. # Center of the gaussian perturbation
sig = length / 30. # width of the perturbation
for nx in range(0, Nx + 2):
x = nx * dx
h[0, nx] = max(0., href + A * exp(-pow(x - x_a, 2) / (2. * pow(sig, 2))) - Z[nx])
if dam_break:
h[0, :int(Nx / 2)] = href
h[0, int(Nx / 2):] = href/2.
q[0, :] = qref
if flat:
# Lake at rest
# for nx in range(0,Nx+2):
# h[0,nx] = max(href-Z[nx],0.)
# qref = 0.
# flat with a given discharge
h[0, :] = href
q[0, :] = qref
if step:
Fr_l = 1.2 # Fr = U/sqrt(gh) = q/sqrt(gh^3) --> h = (q^2/Fr^2/)^1/3
Fr_r = 0.8
hl = pow(qref ** 2 / Fr_l ** 2 / g, 1 / 3.)
hr = pow(qref ** 2 / Fr_r ** 2 / g, 1 / 3.)
h[0, :int(Nx / 2)] = hl
h[0, int(Nx / 2):] = hr
q[0, :] = qref
############################################################################################################
# 3. Loop over time for the equation resolution
############################################################################################################
for nt in range(0, Nt - 1): # Loop over time
if int(nt/Nt*100) < int((nt+1)/Nt*100):
print(f"calcul {int((nt+1)/Nt*100)}% completed")
# Condition to avoid instability
if h[nt, :].sum() == 0:
print('\n !!!! No more water depth, stop the calculation !!!')
break
if h[nt, :].min() < 0:
print('\n !!!! Negative water depth, stop the calculation at time step: ', nt, "!!!\n")
break
####################################################################################################
# 3.1 Evaluate the flux function at every half spatial step xi-1/2
# Initialize the fluxes
FMass = np.zeros(Nx + 2)
FMom = np.zeros(Nx + 2)
c = 0.
# Loop over space to calculate the flux
for nx in range(1, Nx + 2):
# Calculate the flux for Naive, Lax Friedrich or Rusanov formulation
# Evaluation of the celerity
if naive_flux:
# Naive
c = 0.
if lax_friedrich_flux:
# Lax-Friedrich
c = dx / dt
if rusanov_flux:
# Rusanov
if h[nt, nx] > 0.01:
cnx = abs(q[nt, nx] / h[nt, nx]) + sqrt(g * h[nt, nx])
else:
cnx = 0.
if h[nt, nx - 1] > 0.01:
cnxm = abs(q[nt, nx - 1] / h[nt, nx - 1]) + sqrt(g * h[nt, nx - 1])
else:
cnxm = 0.
c = max(cnx, cnxm)
# Calculation of the flux
FMass[nx] = (q[nt, nx] + q[nt, nx - 1]) / 2. - c * (h[nt, nx] - h[nt, nx - 1]) / 2.
if h[nt, nx] > 0 and h[nt, nx - 1] > 0:
FMom[nx] = (q[nt, nx] ** 2 / h[nt, nx] + 0.5 * g * h[nt, nx] ** 2 + q[nt, nx - 1] ** 2 / h[nt, nx - 1] +
0.5 * g * h[nt, nx - 1] ** 2) / 2. - c * (q[nt, nx] - q[nt, nx - 1]) / 2.
elif h[nt, nx] <= 0 and h[nt, nx - 1] <= 0:
FMom[nx] = 0.
elif h[nt, nx] > 0 >= h[nt, nx - 1]:
FMom[nx] = (q[nt, nx] ** 2 / h[nt, nx] + 0.5 * g * h[nt, nx] ** 2) / 2. - c * (
q[nt, nx] - q[nt, nx - 1]) / 2.
elif h[nt, nx] <= 0 < h[nt, nx - 1]:
FMom[nx] = (q[nt, nx - 1] ** 2 / h[nt, nx - 1] + 0.5 * g * h[nt, nx - 1] ** 2) / 2. - c * (
q[nt, nx] - q[nt, nx - 1]) / 2.
####################################################################################################
# 3.2 Evaluate h^{n+1} and q^{n+1} from the flux function
# Loop over space to solve the height and discharge at next time step
for nx in range(1, Nx + 1):
# Evaluate the slope term if activated
if slope_term_calculation:
hig = max(0., h[nt, nx - 1] + Z[nx - 1] - max(Z[nx - 1], Z[nx]))
hid = max(0., h[nt, nx] + Z[nx] - max(Z[nx - 1], Z[nx]))
slopeTerm = - g / 2. * (hig ** 2 - h[nt, nx - 1] ** 2 + h[nt, nx] ** 2 - hid ** 2) / dx
# Evaluate the friction term if activated
if friction_term_calculation:
if h[nt, nx] > 1e-3:
frictionTerm = g / ks ** 2 / h[nt, nx]**(7./3.) * abs(q[nt, nx]) * q[nt, nx]
else:
frictionTerm = 0.
# Calculate h and q at next step from the contribution of the advection, the slope term and the friction term.
# print(f"t {nt} \n x {nx} \nFmass {FMass[nx]} \n Fmom{FMom[nx]} \n q {q[nt, nx]} \n h {h[nt, nx]}")
h[nt + 1, nx] = max(h[nt, nx] - dt / dx * (FMass[nx + 1] - FMass[nx]), 0.)
if h[nt + 1, nx] > 0:
q[nt + 1, nx] = q[nt, nx] - dt / dx * (FMom[nx + 1] - FMom[nx]) - dt * slopeTerm - dt * frictionTerm
else:
q[nt + 1, nx] = 0.
####################################################################################################
# 3.3 Set the boundary conditions for the next time step
# Apply boundary conditions in the two ghost cells (nx = 0 and nx = Nx+1) for q and h
if periodic_bc:
h[nt + 1, 0] = h[nt + 1, 1]
h[nt + 1, Nx + 1] = h[nt + 1, Nx]
q[nt + 1, 0] = q[nt + 1, 1]
q[nt + 1, Nx + 1] = q[nt + 1, Nx]
if dirichlet_bc:
h[nt + 1, 0] = 1.1 * href
h[nt + 1, Nx + 1] = href
q[nt + 1, 0] = qref
q[nt + 1, Nx + 1] = qref
if neumann_bc:
h[nt + 1, 0] = h[nt + 1, 1]
h[nt + 1, Nx + 1] = h[nt + 1, Nx]
q[nt + 1, 0] = q[nt + 1, 1]
q[nt + 1, Nx + 1] = q[nt + 1, Nx]
if mixed_bc:
# Impose the same discharge along the channel
q[nt + 1, 0] = qref
q[nt + 1, Nx + 1] = qref
# Let h vary at the entry of the channel
h[nt + 1, 0] = h[nt + 1, 1]
# Put a gate at the right, has to be Fr = 1
Fr_r = 1.
h[nt + 1, Nx + 1] = pow(qref ** 2 / Fr_r ** 2 / g,
1 / 3.) # Fr = U/sqrt(gh) = q/sqrt(gh^3) --> h = (q^2/Fr^2/)^1/3
################################################################################
# 4. Animated plot of the results (h,q) as a function of time
################################################################################
fig = plt.figure(figsize=(12, 10)) # Create a figure
ax1 = fig.add_subplot(2, 1, 1) # divide the figure in 1 subplot
line = Line2D([], [], color='b') # create a line of color blue, that will be used for the anomaed plot
ax1.add_line(line) # Add the corresponding line to the subplot
ax1.set_xlabel('x (in m)') # Label the x axis
ax1.set_ylabel('h (in m)') # Label the y axis
ax1.set_xlim([0, length]) # Fix the length of the x axis we will see
ax1.set_ylim([0, np.amax(Z) + 1.1 * np.max(h)]) # Fix the length of the x axis we will see
time_text1 = ax1.text(0.1, 0.1, '', transform=ax1.transAxes)
ax1.plot(X, Z[1:-1], '--k')
ax2 = fig.add_subplot(2, 1, 2) # divide the figure in 1 subplot
line2 = Line2D([], [], color='k') # create a line of color blue, that will be used for the anomaed plot
ax2.add_line(line2) # Add the corresponding line to the subplot
ax2.set_xlabel('x (in m)') # Label the x axis
ax2.set_ylabel(r'q (in $m^2/s$)') # Label the y axis
ax2.set_xlim([0, length]) # Fix the length of the x axis we will see
ax2.set_ylim([np.amin(q), 1.1 * np.amax(q)]) # Fix the length of the x axis we will see
# Define the function to initialize the animated plot
def init():
line.set_data([], [])
line2.set_data([], [])
time_text1.set_text('')
return line, line2, time_text1
# Define the function to plot each graph in the animated plot
def animate(i):
line.set_data(X, Z[1:-1] + h[i, 1:-1]) # Everytime the function is called (so for i between 0
# and its final value, prescribed later), plot h[i,:] as a function of X
line2.set_data(X, q[i, 1:-1]) # Everytime the function is called (so for i between
# 0 and its final value, prescribed later), plot h[i,:] as a function of X
time_text1.set_text('time = %.0f s' % (i * dt))
return line, line2, time_text1
# Create the animation plot on figure named fig, where at each i
# it will call the function animate(i), with an initialization function init,
# where i in animate(i) will run from 0 to frames = Nt. Interval denote the velocity (1/frame per second)
# at which the animation will run, repeat = True means that the animation plot will be repeated once it finishes.
ani = animation.FuncAnimation(fig, animate, init_func=init, frames=Nt, blit=True, interval=5., repeat=True)
# Show the figure/animated plot
plt.show()
plt.close(fig)
################################################