-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
executable file
·498 lines (414 loc) · 18.7 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
#!/usr/bin/env python
import os
import datetime
import socket
import base64
from threading import Thread
import gradio as gr
import pandas as pd
import time
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from pytz import utc
from src.display.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
LLM_BENCHMARKS_DETAILS,
FAQ_TEXT,
TITLE,
ACKNOWLEDGEMENT_TEXT,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
TYPES,
AutoEvalColumn,
ModelType,
InferenceFramework,
fields,
WeightType,
Precision,
GPUType
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, H4_TOKEN, IS_PUBLIC, \
QUEUE_REPO, REPO_ID, RESULTS_REPO, DEBUG_QUEUE_REPO, DEBUG_RESULTS_REPO
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
from src.utils import get_dataset_summary_table
def get_args():
import argparse
parser = argparse.ArgumentParser(description="Run the LLM Leaderboard")
parser.add_argument("--debug", action="store_true", help="Run in debug mode")
return parser.parse_args()
args = get_args()
if args.debug:
print("Running in debug mode")
QUEUE_REPO = DEBUG_QUEUE_REPO
RESULTS_REPO = DEBUG_RESULTS_REPO
def ui_snapshot_download(repo_id, local_dir, repo_type, tqdm_class, etag_timeout):
try:
print(local_dir)
snapshot_download(
repo_id=repo_id, local_dir=local_dir, repo_type=repo_type, tqdm_class=tqdm_class, etag_timeout=etag_timeout
)
except Exception as e:
restart_space()
def restart_space():
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
def init_space():
# dataset_df = get_dataset_summary_table(file_path="blog/Hallucination-Leaderboard-Summary.csv")
if socket.gethostname() not in {"neuromancer"}:
# sync model_type with open-llm-leaderboard
ui_snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
)
ui_snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
)
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, "", COLS, BENCHMARK_COLS)
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(
EVAL_REQUESTS_PATH, EVAL_COLS
)
# return dataset_df, original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df
return None, original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df
def add_benchmark_columns(shown_columns):
benchmark_columns = []
for benchmark in BENCHMARK_COLS:
if benchmark in shown_columns:
for c in COLS:
if benchmark in c and benchmark != c:
benchmark_columns.append(c)
return benchmark_columns
# Searching and filtering
def update_table(
hidden_df: pd.DataFrame, columns: list, type_query: list, precision_query: list, size_query: list, query: str
):
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query)
filtered_df = filter_queries(query, filtered_df)
benchmark_columns = add_benchmark_columns(columns)
df = select_columns(filtered_df, columns + benchmark_columns)
return df
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
# always_here_cols = [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name]
always_here_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
dummy_col = [AutoEvalColumn.dummy.name]
# We use COLS to maintain sorting
filtered_df = df[
# always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name]
always_here_cols
+ [c for c in COLS if c in df.columns and c in columns]
+ dummy_col
]
return filtered_df
def filter_queries(query: str, filtered_df: pd.DataFrame):
final_df = []
if query != "":
queries = [q.strip() for q in query.split(";")]
for _q in queries:
_q = _q.strip()
if _q != "":
temp_filtered_df = search_table(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
subset = [AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
filtered_df = filtered_df.drop_duplicates(subset=subset)
return filtered_df
def filter_models(df: pd.DataFrame, type_query: list, size_query: list, precision_query: list) -> pd.DataFrame:
# Show all models
filtered_df = df
type_emoji = [t[0] for t in type_query]
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
filtered_df = filtered_df.loc[df[AutoEvalColumn.inference_framework.name].isin(size_query)]
# numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
# params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
# mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
# filtered_df = filtered_df.loc[mask]
return filtered_df
shown_columns = None
dataset_df, original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = init_space()
leaderboard_df = original_df.copy()
# def update_leaderboard_table():
# global leaderboard_df, shown_columns
# print("Updating leaderboard table")
# return leaderboard_df[
# [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
# + shown_columns.value
# + [AutoEvalColumn.dummy.name]
# ] if not leaderboard_df.empty else leaderboard_df
# def update_hidden_leaderboard_table():
# global original_df
# return original_df[COLS] if original_df.empty is False else original_df
# def update_dataset_table():
# global dataset_df
# return dataset_df
# def update_finish_table():
# global finished_eval_queue_df
# return finished_eval_queue_df
# def update_running_table():
# global running_eval_queue_df
# return running_eval_queue_df
# def update_pending_table():
# global pending_eval_queue_df
# return pending_eval_queue_df
# def update_finish_num():
# global finished_eval_queue_df
# return len(finished_eval_queue_df)
# def update_running_num():
# global running_eval_queue_df
# return len(running_eval_queue_df)
# def update_pending_num():
# global pending_eval_queue_df
# return len(pending_eval_queue_df)
# triggered only once at startup => read query parameter if it exists
def load_query(request: gr.Request):
query = request.query_params.get("query") or ""
return query
def get_image_html(url, image_path):
with open(image_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode()
return f'<a href="{url}" target="_blank"><img src="data:image/jpg;base64,{encoded_string}" alt="NetMind.AI Logo" style="width:100pt;"></a>'
# Prepare the HTML content with the image
image_html = get_image_html("https://netmind.ai/home", "./src/display/imgs/Netmind.AI_LOGO.jpg")
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
gr.HTML(ACKNOWLEDGEMENT_TEXT.format(image_html=image_html))
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("open-moe-llm-leaderboard", elem_id="llm-benchmark-tab-table", id=0):
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder=" 🔍 Model search (separate multiple queries with `;`)",
show_label=False,
elem_id="search-bar"
)
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[
c.name
for c in fields(AutoEvalColumn)
if not c.hidden and not c.never_hidden and not c.dummy
],
value=[
c.name
for c in fields(AutoEvalColumn)
if c.displayed_by_default and not c.hidden and not c.never_hidden
],
label="Tasks",
elem_id="column-select",
interactive=True,
)
with gr.Column(min_width=320):
filter_columns_size = gr.CheckboxGroup(
label="Inference frameworks",
choices=[t.to_str() for t in InferenceFramework],
value=[t.to_str() for t in InferenceFramework],
interactive=True,
elem_id="filter-columns-size",
)
filter_columns_type = gr.CheckboxGroup(
label="Model types",
choices=[t.to_str() for t in ModelType],
value=[t.to_str() for t in ModelType],
interactive=True,
elem_id="filter-columns-type",
)
filter_columns_precision = gr.CheckboxGroup(
label="Precision",
choices=[i.value.name for i in Precision],
value=[i.value.name for i in Precision],
interactive=True,
elem_id="filter-columns-precision",
)
# filter_columns_size = gr.CheckboxGroup(
# label="Model sizes (in billions of parameters)",
# choices=list(NUMERIC_INTERVALS.keys()),
# value=list(NUMERIC_INTERVALS.keys()),
# interactive=True,
# elem_id="filter-columns-size",
# )
# breakpoint()
benchmark_columns = add_benchmark_columns(shown_columns.value)
leaderboard_table = gr.components.Dataframe(
value=(
leaderboard_df[
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
+ shown_columns.value
+ benchmark_columns
+ [AutoEvalColumn.dummy.name]
]
if leaderboard_df.empty is False
else leaderboard_df
),
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value + benchmark_columns,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
) # column_widths=["2%", "20%"]
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=original_df[COLS] if original_df.empty is False else original_df,
headers=COLS,
datatype=TYPES,
visible=False,
)
search_bar.submit(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
search_bar,
],
leaderboard_table
)
# Check query parameter once at startup and update search bar
demo.load(load_query, inputs=[], outputs=[search_bar])
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size]:
selector.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
search_bar,
],
leaderboard_table,
queue=True,
)
# with gr.TabItem("About", elem_id="llm-benchmark-tab-table", id=2):
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
# dataset_table = gr.components.Dataframe(
# value=dataset_df,
# headers=list(dataset_df.columns),
# datatype=["str", "markdown", "str", "str", "str"],
# elem_id="dataset-table",
# interactive=False,
# visible=True,
# column_widths=["15%", "20%"],
# )
# gr.Markdown(LLM_BENCHMARKS_DETAILS, elem_classes="markdown-text")
# gr.Markdown(FAQ_TEXT, elem_classes="markdown-text")
with gr.TabItem("Submit a model ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(f"✅ Finished Evaluations ({len(finished_eval_queue_df)})", open=False):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5
)
with gr.Accordion(f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})", open=False):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5
)
with gr.Accordion(f"⏳ Scheduled Evaluation Queue ({len(pending_eval_queue_df)})", open=False):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5
)
with gr.Row():
gr.Markdown("# Submit your model here", elem_classes="markdown-text")
with gr.Row():
inference_framework = gr.Dropdown(
choices=[t.to_str() for t in InferenceFramework],
label="Inference framework",
multiselect=False,
value=None,
interactive=True,
)
gpu_type = gr.Dropdown(
choices=[t.to_str() for t in GPUType],
label="GPU type",
multiselect=False,
value="NVIDIA-A100-PCIe-80GB",
interactive=True,
)
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC)
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float32",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
debug = gr.Checkbox(value=args.debug, label="Debug", visible=False)
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
private,
weight_type,
model_type,
inference_framework,
debug,
gpu_type
],
submission_result,
)
with gr.Row():
with gr.Accordion("Citing this leaderboard", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler(timezone=utc)
scheduler.add_job(restart_space, "interval", hours=6)
def launch_backend():
import subprocess
from src.backend.envs import DEVICE
if DEVICE not in {"cpu"}:
_ = subprocess.run(["python", "backend-cli.py"])
# Thread(target=periodic_init, daemon=True).start()
# scheduler.add_job(launch_backend, "interval", seconds=120)
if __name__ == "__main__":
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()