-
Notifications
You must be signed in to change notification settings - Fork 42
/
science_test.go
251 lines (222 loc) · 6.47 KB
/
science_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/*
Copyright © 2017 the InMAP authors.
This file is part of InMAP.
InMAP is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
InMAP is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with InMAP. If not, see <http://www.gnu.org/licenses/>.
*/
package inmap
import (
"math"
"testing"
"github.com/ctessum/geom"
)
// Test whether convective mixing coefficients are balanced in
// a way that conserves mass
func TestConvectiveMixing(t *testing.T) {
const testTolerance = 1.e-8
cfg, ctmdata, pop, popIndices, mr, mortIndices := VarGridTestData()
emis := NewEmissions()
mutator, err := PopulationMutator(cfg, popIndices)
if err != nil {
t.Error(err)
}
var m Mech
d := &InMAP{
InitFuncs: []DomainManipulator{
cfg.RegularGrid(ctmdata, pop, popIndices, mr, mortIndices, emis, m),
cfg.MutateGrid(mutator, ctmdata, pop, mr, emis, m, nil),
},
}
if err := d.Init(); err != nil {
t.Error(err)
}
for _, c := range d.Cells() {
val := c.M2u - c.M2d + (*c.above)[0].M2d*(*c.above)[0].Dz/c.Dz
if absDifferent(val, 0, testTolerance) {
t.Error(c.Layer, val, c.M2u, c.M2d, (*c.above)[0].M2d)
}
}
}
// Test whether the mixing mechanisms are properly conserving mass
func TestMixing(t *testing.T) {
const (
testTolerance = 1.e-8
numTimesteps = 5
)
cfg, ctmdata, pop, popIndices, mr, mortIndices := VarGridTestData()
emis := NewEmissions()
emis.Add(&EmisRecord{
PM25: E,
Geom: geom.LineString{
geom.Point{X: -3999, Y: -3999.},
geom.Point{X: -3500, Y: -3500.},
},
}) // ground level emissions
mutator, err := PopulationMutator(cfg, popIndices)
if err != nil {
t.Error(err)
}
var m Mech
d := &InMAP{
InitFuncs: []DomainManipulator{
cfg.RegularGrid(ctmdata, pop, popIndices, mr, mortIndices, emis, m),
cfg.MutateGrid(mutator, ctmdata, pop, mr, emis, m, nil),
SetTimestepCFL(),
},
RunFuncs: []DomainManipulator{
Calculations(AddEmissionsFlux()),
Calculations(Mixing()),
SteadyStateConvergenceCheck(numTimesteps, cfg.PopGridColumn, m, nil),
},
}
if err := d.Init(); err != nil {
t.Error(err)
}
if err := d.Run(); err != nil {
t.Error(err)
}
sum := 0.
maxval := 0.
for _, group := range []*cellList{d.cells, d.westBoundary, d.eastBoundary,
d.northBoundary, d.southBoundary, d.topBoundary} {
for _, cell := range *group {
sum += cell.Cf[iPM2_5] * cell.Volume
maxval = max(maxval, cell.Cf[iPM2_5])
}
}
cells := d.Cells()
expectedMass := cells[0].EmisFlux[iPM2_5] * cells[0].Volume * d.Dt * numTimesteps
if different(sum, expectedMass, testTolerance) {
t.Errorf("sum=%g (it should equal %g)\n", sum, expectedMass)
}
if !different(sum, maxval, testTolerance) {
t.Error("All of the mass is in one cell--it didn't mix")
}
}
// Test whether mass is conserved during advection.
func TestAdvection(t *testing.T) {
const tolerance = 1.e-8
cfg, ctmdata, pop, popIndices, mr, mortIndices := VarGridTestData()
emis := NewEmissions()
mutator, err := PopulationMutator(cfg, popIndices)
if err != nil {
t.Error(err)
}
var m Mech
d := &InMAP{
InitFuncs: []DomainManipulator{
cfg.RegularGrid(ctmdata, pop, popIndices, mr, mortIndices, emis, m),
cfg.MutateGrid(mutator, ctmdata, pop, mr, emis, m, nil),
SetTimestepCFL(),
},
RunFuncs: []DomainManipulator{
Calculations(AddEmissionsFlux()),
Calculations(UpwindAdvection()),
SteadyStateConvergenceCheck(1, cfg.PopGridColumn, m, nil),
},
}
if err := d.Init(); err != nil {
t.Error(err)
}
var cellGroups = []*cellList{d.cells, d.westBoundary, d.eastBoundary,
d.northBoundary, d.southBoundary, d.topBoundary}
for _, testCell := range d.Cells() {
ResetCells()(d)
// Add emissions
testCell.Ci[0] += E / testCell.Dz / testCell.Dy / testCell.Dx
testCell.Cf[0] += E / testCell.Dz / testCell.Dy / testCell.Dx
// Calculate advection
if err := d.Run(); err != nil {
t.Error(err)
}
sum := 0.
layerSum := make(map[int]float64)
for _, cellGroup := range cellGroups {
for _, c := range *cellGroup {
val := c.Cf[0] * c.Dy * c.Dx * c.Dz
if val < 0 {
t.Fatalf("cell %v emis: negative concentration", testCell)
}
sum += val
layerSum[c.Layer] += val
}
}
if different(sum, E, tolerance) {
t.Errorf("cell %v emis: sum=%.12g (it should equal %v)\n", testCell, sum, E)
}
}
}
// Test whether mass is conserved during meander mixing.
func TestMeanderMixing(t *testing.T) {
const tolerance = 1.e-8
nsteps := 10
cfg, ctmdata, pop, popIndices, mr, mortIndices := VarGridTestData()
emis := NewEmissions()
mutator, err := PopulationMutator(cfg, popIndices)
if err != nil {
t.Error(err)
}
var m Mech
d := &InMAP{
InitFuncs: []DomainManipulator{
cfg.RegularGrid(ctmdata, pop, popIndices, mr, mortIndices, emis, m),
cfg.MutateGrid(mutator, ctmdata, pop, mr, emis, m, nil),
SetTimestepCFL(),
},
RunFuncs: []DomainManipulator{
Calculations(AddEmissionsFlux()),
Calculations(MeanderMixing()),
SteadyStateConvergenceCheck(nsteps, cfg.PopGridColumn, m, nil),
},
}
if err := d.Init(); err != nil {
t.Error(err)
}
var cellGroups = []*cellList{d.cells, d.westBoundary, d.eastBoundary,
d.northBoundary, d.southBoundary, d.topBoundary}
for _, testCell := range *d.cells {
for _, group := range cellGroups {
for _, c := range *group {
c.Ci[0] = 0
c.Cf[0] = 0
}
}
ResetCells()(d)
for tt := 0; tt < nsteps; tt++ {
testCell.Ci[0] += E / testCell.Dz / testCell.Dy / testCell.Dx // ground level emissions
testCell.Cf[0] += E / testCell.Dz / testCell.Dy / testCell.Dx // ground level emissions
if err := d.Run(); err != nil {
t.Error(err)
}
}
sum := 0.
layerSum := make(map[int]float64)
for _, group := range cellGroups {
for _, c := range *group {
val := c.Cf[0] * c.Dy * c.Dx * c.Dz
if val < 0 {
t.Fatalf("cell %v emis: negative concentration", testCell)
}
sum += val
layerSum[c.Layer] += val
}
}
if different(sum, E*float64(nsteps), tolerance) {
t.Errorf("cell %v emis: sum=%.12g (it should equal %v)\n", testCell, sum, E*float64(nsteps))
}
}
}
func absDifferent(a, b, tolerance float64) bool {
if math.Abs(a-b) > tolerance {
return true
}
return false
}