-
Notifications
You must be signed in to change notification settings - Fork 0
/
chirpedFBG_Ouellette87.nb
1869 lines (1840 loc) · 102 KB
/
chirpedFBG_Ouellette87.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 103783, 1861]
NotebookOptionsPosition[ 102467, 1832]
NotebookOutlinePosition[ 102870, 1848]
CellTagsIndexPosition[ 102827, 1845]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
RowBox[{"(*", " ",
RowBox[{
RowBox[{
"calculating", " ", "the", " ", "complex", " ", "reflectivity", " ", "of",
" ", "a", " ", "chirped", " ", "FBG", " ", "with", " ", "parameters",
"\[IndentingNewLine]", "based", " ", "on", " ", "results", " ", "in", " ",
"Figure", " ", "1", " ", "of", " ", "the", " ", "reference", " ",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"F", ".", " ", "Ouellette"}], ",", " ",
RowBox[{
"\"\<Dispersion cancellation using linearly chirped\nBragg grating \
filters in optical waveguides\>\"", " ", "Optics", " ", "Letters", " ",
RowBox[{"(", "1987", ")"}]}]}], "}"}], ".", "\[IndentingNewLine]",
"Done"}], " ", "by", " ", "Spencer", " ", "Jolly"}], ",", " ",
RowBox[{"B", "-",
RowBox[{"PHOT", " ", "Vrije", " ", "Universiteit", " ", "Brussel"}]}]}],
" ", "*)"}]], "Input",
CellChangeTimes->{{3.8243697452379737`*^9, 3.8243698209186034`*^9}, {
3.8243699496723213`*^9, 3.82436995057878*^9}},
CellLabel->"In[42]:=",ExpressionUUID->"e47b6a57-8a0e-4da7-bda6-972b540e4833"],
Cell[BoxData[
RowBox[{"ClearAll", "[",
RowBox[{"F", ",", "kL", ",", "d", ",", "x", ",", "y", ",", "solution"}],
"]"}]], "Input",
CellChangeTimes->{{3.824203524424718*^9, 3.8242035313871503`*^9}, {
3.8242060890609627`*^9, 3.8242060923890257`*^9}, {3.8242065953412905`*^9,
3.8242066100558386`*^9}, {3.8242068105278807`*^9, 3.824206819824058*^9}, {
3.8242071606374693`*^9, 3.824207161803488*^9}, 3.8243698617604704`*^9},
CellLabel->"In[43]:=",ExpressionUUID->"cf562afb-354a-4a7a-93bc-549cd5499188"],
Cell[BoxData[
RowBox[{
RowBox[{"F", "=",
RowBox[{"40", "*", "3.1415926"}]}], ";"}]], "Input",
CellChangeTimes->{{3.8241993272073545`*^9, 3.8241993855652113`*^9}, {
3.824199440291792*^9, 3.8241994733784394`*^9}, {3.824199626341478*^9,
3.8241996470223417`*^9}, {3.824199687871993*^9, 3.8241998145095243`*^9}, {
3.824199884553529*^9, 3.824199888292742*^9}, {3.824200182216466*^9,
3.824200182265641*^9}, {3.8242002156924067`*^9, 3.8242002371378365`*^9}, {
3.8242002995732903`*^9, 3.824200307953546*^9}, {3.824200809634991*^9,
3.8242008468068876`*^9}, 3.8242060800140114`*^9},
CellLabel->"In[44]:=",ExpressionUUID->"a839b4f5-abdf-4ed7-8409-a9db76e323b2"],
Cell[BoxData[
RowBox[{
RowBox[{"kL", "=",
RowBox[{"2", "*", "3.1415926"}]}], ";"}]], "Input",
CellChangeTimes->{{3.824200852252369*^9, 3.824200862562948*^9},
3.8242060774268446`*^9, 3.824369864403721*^9},
CellLabel->"In[45]:=",ExpressionUUID->"f81eac93-289d-4aa9-b059-ecc9fb892976"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"solution", "=",
RowBox[{"ParametricNDSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"y", "''"}], "[", "x", "]"}], "-",
RowBox[{"I",
RowBox[{"(",
RowBox[{
RowBox[{"2", "*", "d"}], "-",
RowBox[{"F", "*", "x"}]}], ")"}], "*",
RowBox[{
RowBox[{"y", "'"}], "[", "x", "]"}]}], "-",
RowBox[{
RowBox[{"(",
RowBox[{"kL", "^", "2"}], ")"}], "*",
RowBox[{"y", "[", "x", "]"}]}]}], "==", "0"}], ",",
RowBox[{
RowBox[{
RowBox[{"y", "'"}], "[",
RowBox[{
RowBox[{"-", "1"}], "/", "2"}], "]"}], "\[Equal]",
RowBox[{"kL", "*",
RowBox[{"Exp", "[",
RowBox[{"I", "*",
RowBox[{"(",
RowBox[{
RowBox[{"-", "d"}], "-",
RowBox[{"F", "/", "8"}]}], ")"}]}], "]"}]}]}], ",",
RowBox[{
RowBox[{"y", "[",
RowBox[{"1", "/", "2"}], "]"}], "\[Equal]", "0"}]}], "}"}], ",", "y",
",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{
RowBox[{"-", "1"}], "/", "2"}], ",",
RowBox[{"1", "/", "2"}]}], "}"}], ",",
RowBox[{"{", "d", "}"}]}], "]"}]}]], "Input",
CellChangeTimes->{
3.824200826496501*^9, 3.824201808095125*^9, {3.824203149451311*^9,
3.8242031832700777`*^9}, {3.824203266764485*^9, 3.8242032819329176`*^9}, {
3.82420371432317*^9, 3.824203722154312*^9}, {3.824203773473206*^9,
3.824203783283062*^9}, {3.8242655797782555`*^9, 3.8242655801161976`*^9}, {
3.8243698673852525`*^9, 3.8243698717580595`*^9}},
CellLabel->"In[46]:=",ExpressionUUID->"47d1a28c-0123-4975-af1b-987aeb36303b"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"y", "\[Rule]",
TagBox[
TemplateBox[{
RowBox[{
StyleBox[
TagBox["ParametricFunction", "SummaryHead"],
"NonInterpretableSummary"],
StyleBox["[", "NonInterpretableSummary"],
DynamicModuleBox[{
Typeset`open$$ = False, Typeset`embedState$$ = "Ready"},
TemplateBox[{
PaneSelectorBox[{False -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource[
"FEBitmaps", "SummaryBoxOpener"]],
ButtonFunction :> (Typeset`open$$ = True), Appearance ->
None, BaseStyle -> {}, Evaluator -> Automatic, Method ->
"Preemptive"], Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
GraphicsBox[{{}, {}, {
GrayLevel[0.55],
AbsoluteThickness[1.5],
Opacity[1.],
LineBox[{{9.09090909090909*^-8, 9.090909090884856*^-8}, {
0.0874367476365131, 0.08197166587636243}, {
0.18222810297558026`, 0.1358255024317191}, {
0.27073779576926765`, 0.13315455086535802`}, {
0.3575112797365835, 0.08143316377978886}, {
0.4516394623155443, -0.007347854733426912}, {
0.5394859823491253, -0.08816932746972758}, {
0.6346872009943513, -0.13787329990112937`}, {
0.7281522108132057, -0.12816574147938434`}, {
0.8153355580866803, -0.07001063326902106}, {
0.9098736039718, 0.02121659675083076}, {
0.9999999090909091, 0.10024804094746914`}}]}, {
GrayLevel[0.55],
AbsoluteThickness[1.5],
Opacity[1.],
LineBox[{{9.09090909090909*^-8, 9.090909090880112*^-8}, {
0.0874367476365131, 0.08090369567458766}, {
0.18222810297558026`, 0.12746559200130417`}, {
0.27073779576926765`, 0.1116266937044405}, {
0.3575112797365835, 0.046963725126600256`}, {
0.4516394623155443, -0.04509050859182233}, {
0.5394859823491253, -0.11115559892361665`}, {
0.6346872009943513, -0.12642564594664163`}, {
0.7281522108132057, -0.07740196037964171}, {
0.8153355580866803, 0.004179083230780074}, {
0.9098736039718, 0.08937493944143977}, {
0.9999999090909091, 0.12834702174618903`}}]}, {
GrayLevel[0.55],
AbsoluteThickness[1.5],
Opacity[1.],
LineBox[{{9.09090909090909*^-8, 9.090909090875369*^-8}, {
0.0874367476365131, 0.07984396759533968}, {
0.18222810297558026`, 0.11939549826670079`}, {
0.27073779576926765`, 0.09184904274707059}, {
0.3575112797365835, 0.017913117173780694`}, {
0.4516394623155443, -0.07109962300031061}, {
0.5394859823491253, -0.11717052830989395`}, {
0.6346872009943513, -0.09879571259704382}, {
0.7281522108132057, -0.022693471356141894`}, {
0.8153355580866803, 0.06128703302641453}, {
0.9098736039718, 0.11605625481609519`}, {
0.9999999090909091, 0.10415981267620744`}}]}, {
GrayLevel[0.55],
AbsoluteThickness[1.5],
Opacity[1.],
LineBox[{{9.09090909090909*^-8, 9.090909090870287*^-8}, {
0.0874367476365131, 0.07879243663407876}, {
0.18222810297558026`, 0.1116081822210312}, {
0.27073779576926765`, 0.07372482040530459}, {
0.3575112797365835, -0.006267252216927747}, {
0.4516394623155443, -0.08743897872291118}, {
0.5394859823491253, -0.11109134853087661`}, {
0.6346872009943513, -0.06371549528296311}, {
0.7281522108132057, 0.02544576624054603}, {
0.8153355580866803, 0.09464282937855747}, {
0.9098736039718, 0.10731931496853601`}, {
0.9999999090909091, 0.0516787429232188}}]}, {
GrayLevel[0.55],
AbsoluteThickness[1.5],
Opacity[1.],
LineBox[{{9.09090909090909*^-8, 9.090909090865543*^-8}, {
0.0874367476365131, 0.07774905743802465}, {
0.18222810297558026`, 0.10409673959866513`}, {
0.27073779576926765`, 0.05716133039337165}, {
0.3575112797365835, -0.026084496726167965`}, {
0.4516394623155443, -0.09591154799603378}, {
0.5394859823491253, -0.09685594593277226}, {
0.6346872009943513, -0.02730376120671303}, {
0.7281522108132057, 0.061646715198529656`}, {
0.8153355580866803, 0.1046634148537508}, {0.9098736039718,
0.07509702498429204}, {
0.9999999090909091, -0.006536873471333553}}]}, {
GrayLevel[0.55],
AbsoluteThickness[1.5],
Opacity[1.],
LineBox[{{9.09090909090909*^-8, 9.0909090908608*^-8}, {
0.0874367476365131, 0.07671378556951527}, {
0.18222810297558026`, 0.09685439581479163}, {
0.27073779576926765`, 0.042069810325321415`}, {
0.3575112797365835, -0.042006785469922474`}, {
0.4516394623155443, -0.09808544986431629}, {
0.5394859823491253, -0.07760167026270944}, {
0.6346872009943513, 0.0063643674428021085`}, {
0.7281522108132057, 0.08405712128907425}, {
0.8153355580866803, 0.09555213349985489}, {
0.9098736039718, 0.03202960165577907}, {
0.9999999090909091, -0.054402034659985464`}}]}},
AspectRatio -> 1, Axes -> {False, False},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, Background ->
GrayLevel[0.93], BaseStyle -> {FontFamily -> "Arial"},
DisplayFunction -> Identity,
Frame -> {{True, True}, {True, True}},
FrameLabel -> {{None, None}, {None, None}}, FrameStyle ->
Directive[
Thickness[Tiny],
GrayLevel[0.7]],
FrameTicks -> {{None, None}, {None, None}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize ->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}], LabelStyle -> {FontFamily -> "Arial"},
Method -> {"ScalingFunctions" -> None},
PlotRange -> {All, All}, PlotRangeClipping -> True,
PlotRangePadding -> {Automatic, Automatic},
Ticks -> {Automatic, Automatic}],
GridBox[{{
RowBox[{
TagBox["\"Expression: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
TagBox["y", HoldForm], "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Parameters: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
RowBox[{"{", "d", "}"}], "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {
"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}], True -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource[
"FEBitmaps", "SummaryBoxCloser"]],
ButtonFunction :> (Typeset`open$$ = False), Appearance ->
None, BaseStyle -> {}, Evaluator -> Automatic, Method ->
"Preemptive"], Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
GraphicsBox[{{}, {}, {
GrayLevel[0.55],
AbsoluteThickness[1.5],
Opacity[1.],
LineBox[{{9.09090909090909*^-8, 9.090909090884856*^-8}, {
0.0874367476365131, 0.08197166587636243}, {
0.18222810297558026`, 0.1358255024317191}, {
0.27073779576926765`, 0.13315455086535802`}, {
0.3575112797365835, 0.08143316377978886}, {
0.4516394623155443, -0.007347854733426912}, {
0.5394859823491253, -0.08816932746972758}, {
0.6346872009943513, -0.13787329990112937`}, {
0.7281522108132057, -0.12816574147938434`}, {
0.8153355580866803, -0.07001063326902106}, {
0.9098736039718, 0.02121659675083076}, {
0.9999999090909091, 0.10024804094746914`}}]}, {
GrayLevel[0.55],
AbsoluteThickness[1.5],
Opacity[1.],
LineBox[{{9.09090909090909*^-8, 9.090909090880112*^-8}, {
0.0874367476365131, 0.08090369567458766}, {
0.18222810297558026`, 0.12746559200130417`}, {
0.27073779576926765`, 0.1116266937044405}, {
0.3575112797365835, 0.046963725126600256`}, {
0.4516394623155443, -0.04509050859182233}, {
0.5394859823491253, -0.11115559892361665`}, {
0.6346872009943513, -0.12642564594664163`}, {
0.7281522108132057, -0.07740196037964171}, {
0.8153355580866803, 0.004179083230780074}, {
0.9098736039718, 0.08937493944143977}, {
0.9999999090909091, 0.12834702174618903`}}]}, {
GrayLevel[0.55],
AbsoluteThickness[1.5],
Opacity[1.],
LineBox[{{9.09090909090909*^-8, 9.090909090875369*^-8}, {
0.0874367476365131, 0.07984396759533968}, {
0.18222810297558026`, 0.11939549826670079`}, {
0.27073779576926765`, 0.09184904274707059}, {
0.3575112797365835, 0.017913117173780694`}, {
0.4516394623155443, -0.07109962300031061}, {
0.5394859823491253, -0.11717052830989395`}, {
0.6346872009943513, -0.09879571259704382}, {
0.7281522108132057, -0.022693471356141894`}, {
0.8153355580866803, 0.06128703302641453}, {
0.9098736039718, 0.11605625481609519`}, {
0.9999999090909091, 0.10415981267620744`}}]}, {
GrayLevel[0.55],
AbsoluteThickness[1.5],
Opacity[1.],
LineBox[{{9.09090909090909*^-8, 9.090909090870287*^-8}, {
0.0874367476365131, 0.07879243663407876}, {
0.18222810297558026`, 0.1116081822210312}, {
0.27073779576926765`, 0.07372482040530459}, {
0.3575112797365835, -0.006267252216927747}, {
0.4516394623155443, -0.08743897872291118}, {
0.5394859823491253, -0.11109134853087661`}, {
0.6346872009943513, -0.06371549528296311}, {
0.7281522108132057, 0.02544576624054603}, {
0.8153355580866803, 0.09464282937855747}, {
0.9098736039718, 0.10731931496853601`}, {
0.9999999090909091, 0.0516787429232188}}]}, {
GrayLevel[0.55],
AbsoluteThickness[1.5],
Opacity[1.],
LineBox[{{9.09090909090909*^-8, 9.090909090865543*^-8}, {
0.0874367476365131, 0.07774905743802465}, {
0.18222810297558026`, 0.10409673959866513`}, {
0.27073779576926765`, 0.05716133039337165}, {
0.3575112797365835, -0.026084496726167965`}, {
0.4516394623155443, -0.09591154799603378}, {
0.5394859823491253, -0.09685594593277226}, {
0.6346872009943513, -0.02730376120671303}, {
0.7281522108132057, 0.061646715198529656`}, {
0.8153355580866803, 0.1046634148537508}, {0.9098736039718,
0.07509702498429204}, {
0.9999999090909091, -0.006536873471333553}}]}, {
GrayLevel[0.55],
AbsoluteThickness[1.5],
Opacity[1.],
LineBox[{{9.09090909090909*^-8, 9.0909090908608*^-8}, {
0.0874367476365131, 0.07671378556951527}, {
0.18222810297558026`, 0.09685439581479163}, {
0.27073779576926765`, 0.042069810325321415`}, {
0.3575112797365835, -0.042006785469922474`}, {
0.4516394623155443, -0.09808544986431629}, {
0.5394859823491253, -0.07760167026270944}, {
0.6346872009943513, 0.0063643674428021085`}, {
0.7281522108132057, 0.08405712128907425}, {
0.8153355580866803, 0.09555213349985489}, {
0.9098736039718, 0.03202960165577907}, {
0.9999999090909091, -0.054402034659985464`}}]}},
AspectRatio -> 1, Axes -> {False, False},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, Background ->
GrayLevel[0.93], BaseStyle -> {FontFamily -> "Arial"},
DisplayFunction -> Identity,
Frame -> {{True, True}, {True, True}},
FrameLabel -> {{None, None}, {None, None}}, FrameStyle ->
Directive[
Thickness[Tiny],
GrayLevel[0.7]],
FrameTicks -> {{None, None}, {None, None}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize ->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}], LabelStyle -> {FontFamily -> "Arial"},
Method -> {"ScalingFunctions" -> None},
PlotRange -> {All, All}, PlotRangeClipping -> True,
PlotRangePadding -> {Automatic, Automatic},
Ticks -> {Automatic, Automatic}],
GridBox[{{
RowBox[{
TagBox["\"Expression: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
TagBox["y", HoldForm], "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Parameters: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
RowBox[{"{", "d", "}"}], "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Generator: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["ParametricNDSolve", "SummaryItem"]}]}, {
RowBox[{
TagBox[
"\"Dependent variables: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
RowBox[{"{", "y", "}"}], "SummaryItem"]}]}, {
RowBox[{
TagBox[
"\"Independent variables: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
RowBox[{"{", "x", "}"}], "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {
"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}]},
Dynamic[Typeset`open$$], ImageSize -> Automatic]},
"SummaryPanel"], DynamicModuleValues :> {}],
StyleBox["]", "NonInterpretableSummary"]}]},
"CopyTag",
DisplayFunction->(#& ),
InterpretationFunction->("ParametricFunction[<>]"& )],
False,
Editable->False,
SelectWithContents->True,
Selectable->False]}], "}"}]], "Output",
CellChangeTimes->{
3.824199817286235*^9, 3.824199889009231*^9, 3.824200310001011*^9,
3.824200658185757*^9, 3.824200811298763*^9, 3.8242008686226625`*^9,
3.8242017782167964`*^9, 3.8242018098801713`*^9, {3.8242018887188997`*^9,
3.8242019171627407`*^9}, 3.824201988886647*^9, 3.824203115630811*^9,
3.824203185399439*^9, {3.824203269078079*^9, 3.8242032825890036`*^9},
3.824203569479125*^9, 3.8242037234101048`*^9, 3.824203783816818*^9,
3.8242058186141653`*^9, 3.824205996523279*^9, 3.82420609957127*^9,
3.8242064250602355`*^9, {3.8242066010554075`*^9, 3.8242066267151937`*^9},
3.824206824860915*^9, 3.8242068698705063`*^9, 3.8242069878088164`*^9, {
3.82420716752721*^9, 3.8242071972704415`*^9}, 3.8242072689866495`*^9,
3.824264615460129*^9, 3.824265584808151*^9, 3.8243698977005625`*^9,
3.82453356759893*^9},
CellLabel->"Out[46]=",ExpressionUUID->"41c4711f-8091-4748-81cb-89c5168c3199"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"y", "[", "d", "]"}], "[",
RowBox[{
RowBox[{"-", "1"}], "/", "2"}], "]"}], "/.", "solution"}], ")"}],
"]"}], "^", "2"}], "]"}], ",",
RowBox[{"{",
RowBox[{"d", ",",
RowBox[{"-", "47"}], ",", "47"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "1"}], "}"}]}], ",",
RowBox[{"AxesLabel", "\[Rule]", " ",
RowBox[{"{",
RowBox[{"\[CapitalDelta]", ",", "R"}], "}"}]}]}], "]"}]], "Input",
CellChangeTimes->{{3.8242652956101837`*^9, 3.8242652977195563`*^9}, {
3.8242658517850533`*^9, 3.824265891431695*^9}, {3.824533554515109*^9,
3.8245335604592433`*^9}},
CellLabel->"In[47]:=",ExpressionUUID->"eb355efd-0901-4d29-bfee-2cb3ae14f23a"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwUmHc81f8Xx4kko8yyMrNl73Uul0vIaCn6VlSUFtESKilSKUIpVDbZezs0
yN4rWRHuvWZSSfl9fn/1eD7O577fZ7zexzlJuF7ce2oDAwPDN1YGhv//63Zw
en79pgV6zLJvoZ5NAOWzq2DnZ4HP56wilmgJsHKT40n8NQs8dGTwR/eFRLiX
rqpq5GWBGycv+r+6kQTJa9c8fV0t8KAWqU0vJQXOcT/AT0ctsCb/cwqPeipo
ysRxCTpboM7JwOjoqlR4b1ebW7LPAtequ9WYO9NgImHz4rKZBTqAz+vrkxmQ
WSJsYmZigbPfjeIyT7wFn+Zd4U+NLPDA2aIbfsNvgXnFQU1d2wJjv79/97wh
E5rZTt6+rW6BfukNe0k6WRApdqWjXdkCIyqsHhu8yQKp3S+8LspaoKqa9H4O
t2yg/pdZWy1lgfHKDYvOmA35l6q5t4hb4DqHz7PvfDngG9zu8p+IBfIdlrj4
8kQOmMaO52UKWKAei8Qe8cwcYMtbZlzjs8CZ5dtf9s3lQOcHlr3W3BaYNlH5
Hwt/LrwYFEh4wWmBWTkP9z9VyQXXeYWlmc0WqKbRTK6l5IICs5GpHosFrthr
G91xyoUlAbuIkA0WOHWvdr3VIxfKd7mM9/2joNKHwvXYq7kQaOqtLvuHgttI
Xp7Tt3LByvFu4JWfFLTrebMr514u8Jx71vnhOwUdDz37vhiSC4O30iX5Fyjo
faXEqDA4F95EVVw6SafgZM9Xu7XAXDid0VJXME1B/9/XdLt8c0G1ZoSHaZKC
7SthHWYXc+FX16Lr3jEKVnNblx07ngs4zVTw5gsFeS4sO2jZ5kLIX36mxQEK
RpKnKwZ0c8GeR24fqZeCVIGMphPiuSAgq5/4uJOCUyrtTLPMuTBqYPN9uJWC
T/r1BaRaciDN/ihZuYmCu7XKTUdDc8DzlOdT/3oKclVWb99PzoH1sEgNEaSg
iswBu8DkbPiYmHLnbCUFf9hxzA/YZUNYaWlXeSkFD33ZYiq5kgWi40Peh/OI
eN5+z5kn6v9tZe5dWhYF9w2Lb9HszoRsdka+X+kUbJ44rzZ1PhOMtaQLoxMo
GOUY+dD45Vv4L+T8ctdTCqrdjmRonkmHtf0GrV2PKWgbdK7RxycdYiU2p3U9
oKCBpuKh3QzpMFSe5Nx1h4LH7rqF9uxIA7/gS1pdNyn4vYcaUpmbCiL7SVu7
blDwjU5soZJFKhyZ/VzX6U1B7jd8YSu3UmCtLD228yIFL013zlyUToHYe1ev
dJ6loMQPoxO5bclguM/cvtOdgm+5DA8b3UqGz2K8Cp0nKJj+W7kkWicZfOmj
TJ3HKOhee9tGeyUJhMqyv3Q4U3BRZWnH48okKL/rV9LhSMFw2S/vOB4kgdNe
q/COfRRCvxz9PK5JsCoqcLbDjoLDXXIH10yS4AVt0qzDmoIb+d0EhBWTQL+0
QLTDgoJy0T6HSnYkwUDQ7V/tZArmF/bobxVKgmsOdp3tQEGZdBmvg+JJICC6
I7PdgIKiTDVzRapJUEql3m3XoeBfdi5na+skOFRSeqxdg4KPN8byynsmwa87
9/TaVQh9Hd6YdvBVEjy338/brkjBl5tDjrT1J4HuDsnZNlkK7mEZVb8jkgx9
M/Mf26QoWGn/L/agRzJcKa563SZGQca4J42Sdcmw7c4D3zZhCpZlbn1eJJUC
xXaH97dtJ/Qz6va7IywFDorIKrfxUjDsJl1PlSkVVqaXN7VtpSB5M++RgFup
EF1UN9bKTsFyvzPBx1nSoMf2aFQrEwUDpU3FyQrp4COsdLF13RzndIOZj9Wn
A9/0b8vWP+a4Gmy62eJsBuy/HbXW8t0c30R9MTj+4S0s7znR2zJvjn3bfl32
8c2ESCG13BaaOb46et5BRDMLugqaT7R8Ncf7p12uluZnw95vTE3NXeb4KVez
rHqS6Af5HUnNbebI+/GUdu/uPIi4+Sqguckc43KsfbOz8qBDwEC9+Z05HqPp
/3PyzgfPSVaO5hpzjNlw5H1Ydz5w5fdONlWY49fat3OmmgVgb30ppqnAHA8w
dLj/nS2Ahe0k76Ycc/Syxgwvi0J4MsG5p+mtOW4md6SZxhdCm386Q1OiOTYY
GT34bloEF6yuDja+MsfI2MN2jk+KYMt288LGl+a48cA2XfHBIrDNHXVvfGqO
FvNweItrMXRocYpveWKOvne1g7+8LIb9FXr9Dg/NcUrvWf94RzH0kdyeRIWY
46Tp0eZ/TCXg9DHCciCIiP/Sv3986iXwxbqGYcdtc7TWXAWOIyVwvINWetzf
HJXz12Nab5fAxEEBr6Tr5sikcNl1d2IJuA+ZyU9fNsdHO5Ktz2MJUF28xhQv
EeellbgrD5TAham4mIsXCP+Ou2oHzZbA4rlGhwIPc9SlPcw+87cEfJZWNv90
M8fDkhakL6yl8POqVJ3+CXMcUR/+Mrq1FHz/2vkGHDPHhxtaNl/nKYW/gX7q
dc7muF3OuTWXqxRusaZTNx4yR/bPp948ZSsFprCehN37zTEkji9ajaEU7vFu
cH5kb44KtjwW8YslwBajzNthY47njeq7FoZL4JGocxPfbnMUKbT4TG4oAa6k
4DuHzM1Rwz/yclFWCUTKFxrEmpjjk3+siu6PS2B7zuj3ESNzZLbxmvE/XwIv
NDkzpfTNsdhW56eEZQnsKNc76a5tjpL9pyYCxErgNbiJvFU3xwVfg2vvvhdD
ilXNQ3VF4rwyU6vWp8Ug304zuyJrjseTOt0YjxdD5gGBv2VS5kgq8M75IV8M
Bce9zpuImOOXjZJ8QqVFoP0tTvquAJGPjU7Pmv2KoPxs45cGPkKvHMp1ZqQi
wCtStvac5lh+vbsw4X0hND/sUT72zwyHmJYP6DUVgB3PhqmEVTNUvGn4Tyms
ADqfKb/6tmKG/N8Dmcl7C2AgIXjrhXkzrNBrB+6RfDgiV1ifRzPDIqtPom5p
+TCaNXrzx5QZhh7byrnNJx++leot+I2a4cwgLa6INx/OGLul4ZAZWk6+O6o7
nQf0dxHHmQfMMCJzsNoA8+Di7hoByx4zvMrmmsQUmwdLrbT2Bx1mmJq1SaDj
Rh5c3i9wv63FDOleoYtjx/Lg14CZCW+jGTo1eN3ztMwDv2Nevw9+NMNH4ZnO
BVp5sD4Rl/eizgzVTTIHh2TzINCj8cxwtRn+W3vFKSyWBywLKxKSFWYYUH7V
4ZlwHty/LDV4qsQMBe5vVryyIw84/thFpBeYoa5BCHPfzjx4fMvPajbHDL/m
cjJ0q+UBD0v6BrVMM/QyFmy9bZYHUQ96yn3SzFAv6tSD+SN5IMC9wbs0yQxt
mk6lyBD+t/8+OLvljRne386Z7h6fByHjb91PxZnhxv5MQf36PCA1MYxXxBD+
2JlkRP8g4is4cIQn2gwv98oXecrnQ25sRu/pCDOcp/nuLnbNh9N31+1rwsxw
369wY/s3+dB/MN38XLAZmroH6LIrF8AT+FdTd8cMz00Mfpu4UQCWcvv0BW+Z
YcuF8fig1gIo/b2m/PGaGdbGqsKB24XgOe6QLnLZDJ0Nwo8LjxWCXFOKlLcX
wUMJ/p1mRRATay8g7mGGhksU623bi2Hv3eSIK25mWHZNKFvkbjGwXVjlaHE1
Q7eVfWysK8XgC0mMvs5m2My8LOA2QvST8Z/ULhszvDWitr2tvgyE5F5VBasQ
38fP3nmbXgWdXMs6w4pmyBBj/DlQohpCf1vma8qZ4eK135vdn1XDauNSypi4
GbZHtnmT/Gogv8BCQneHGR4YbM/LpdaAR2zsyzBBMyRZyW3lUUQYPE95YsBj
hlr6UY+fhiNEHHzJFrHFDNm470dL1SFYwULQNJsZvpGQa/qwgFDO9eJ6FJMZ
JluQZMYtauHS77nvtHUy5l+d41fzrAWFcfIF0zUyFgWbDBhE18LLglnX+WUy
unxnVDT5XAv7Y02/mC+ScSzihrXoai1w3H3mGDtLxkOHnnv6bauD9+fpHUsz
ZHQIlDvjoFoHfgdNbHZ/I+PK6ZChSIs60IToj6/GydjzgdmOdKQO6LI00sow
GT0yW6TtLtRBEhepwuYzGd3XXTOq/evgyO9IrcQ+MpZe6uIMC60DvvGZnN9d
ZKx0ED1bHVkHzY3GCvbtZHTa/v3T3tg6CCp4mpTSTEaLcgFx+zd1YBg7Lfq3
gYxHxPX2VSXWwXKQUcy+D2Qkk9v1EgnOPB/Bm1FLxrrTj15yEN+fPDj1iKGa
8Ef+phoLcZ4IGLI6lpPRR+u/5HjivswRG46jxWQ89yee+fd94vxb/3Gdyiej
fBZ9Ps+P8Ef8At+5bDIOtF5v+XqO8L82QMA7g4wsmUuJb52IeF0ei/imkPG2
QyWPPIXIz4bX4rcTyHg48bdFgEodxJJr5R6/IGPqmTBj87VaUJroUIqOJiMj
l332ptFaqAwaV42LIOPu3w9FyHW1MPSBSe9tKBnvPPU7OBJYCyKWlN31vkQ9
YttjtVYRMqcP7mm9QkZZqXf+On0IhvfdHXoukbG65kbiwUKEI40hh796kFE0
g19i4CIC3SPmP6obGbuz5PYV2iL4sWe4LLqSMeT8qfWXygixNk1n1p3IOC+Y
H8Q8WQNKs5/PsziSketDldxiVg1UPqJ7ce4jo2dcnX+3bw3YKP+9zGdHRqtn
80ESNjUw1MrpK2xNxpPahoaWkjVw7qJogKQFGS110/8U/q2Gta0qgfJkMvaO
5XS2DVfDw1y4pwpkvBpA/fbnQzUIO9iH6hgQen1U3BNdUA0Zi8fDjHXIeGbl
pNCv1GrQj/CKMNcgY/vWi76eidXQqB4YbaNCxlXn89d3p1SDU1fEi32KhL+M
x3rf51YD1Tsx3kmWjPGM1bwi76rBl68wwUWKjJTeZvZbX6qBreh9ymkxQh8v
wiMEGGrgxYGejIvCZJzwfSzDrFgDCiuT2Ve2k7Fij22e49EaKI9eyffnJeNf
Uvsh0Rc1YKWzqSRoKxlvqFe7HB6ugcG+7RUP2MnYWcvIc4sfweOaXE3EJkJv
eU9YGUgIqwJ672KYyFhTz+8WfwFByMmpKfWPKS4acr+aJOqXserRlv3TFN9+
33bbiacW9F/e6Cr6bopKygUK9+xrwWko9vM7mil6NVvGevTVAtUva6RxyhQt
RpuVW8XqwHdH9deOr6bYJfEt2fhsHbw4OkIb+Uycv8IUepXtHSisz89/6zPF
e1uSJjr+ewflrxiWZ7tMkf+oduJ/Be9gcFRi7U+TKb4/2xaz7eR7EDpxkkOg
0hTX/iVyyvd8gLDKrjnXUlNkeCTePaf0ERi3kTuyCk1xPNdxcCroI0w3SEST
s0wxmcQjkaxZD0XKI2IX400xK8Bnf9ejBpALsd1Q/sIUJ3iuB5SMNUDsWNUE
8zNTHHuwiWql+QkCI2PTXzw2xZ+Lv+J7uz+B/ephjY+3TNHM5zeX+XojvN/3
iZ/b3xRT77xmO2LWBDpZur+crxP3STz5vH6vCUSPb69a9DJF7h3DmoHMzRBe
du+V4QVT9JbqF1CFZmDmXbkd7GGKKpb3ojdfbQbah27KjhOm2Gd8L+PHl2Y4
KmYmf/qYKX5nZO6Z5miBzmsF7AXOpnjX+s3HBt0WMO+UnPvraIqzYpmmD1xa
oFQxot1yvylW6YuR5IJbQOkuY8FTe1P8Q3WnxaS3wKthz6hhG1NUbilLHWpo
AR7d0avyu03x/LcbXPMTLXAv3M7Jx9wUTwJtteNvC6xSqw1rTEyxX//Q1RDe
VjhvpizGZmyKHc5fO7fLtMJoXBzjAX1TjHukGBOs1Qr7f3JMvNI2RY3e2qgx
k1aot/f7SFUn9DE91qNm3Qr6GbQ0LRVTtOphyLjn0ArZTM4PbikS+trAkrqw
vxUk/ms83yRrioalAamBB1ohsljPfttOU9wraNTssK8VWLnS1V3ETfFwhaff
ZdtWuHFGgD9TxBSXLxqe2mTRCnN1wT9XBEyRg1nrmpRRK7iK/Bww4TfFD9eH
pqdUW6HnslvlQ25TlBDQk78s2QqWbT3xfZym2MLoPDHL3QqVcua3JdlMcatX
2s8r6y2gGlh44jyLKR6f0/LQobVA4mcpSukGU1S8m+lyqKcFQsM2sNv+McH7
87uqPJJb4O+U1+zznyYo+Gb9VumDFvA0GWv7+t0EJ64/PS7m1QKOyzWR1+km
2GNC5tuo3wKNe1Suvp82wc9/hlXmdrSAcWr84a2TJujDXp33nrEFdjr5iyZ/
MUH+Rlq/SGMzPC+gMywMmKDY0sQxnpxmYOc88lW/1wSPOclnDkU2w1KNflp7
qwlOPnd99OVEMxh1nOJrbjRBB3vuaLRuJuajJ7fqP5qg34ml2nKtZuj+XkGv
qzNB54MZidskm0Fs49Sh6moTZL+cHrqDuxk8tvF8KCs3QWEdfd7tTM1QLGuk
VlRMxGdwu9DyVxMw6p2Oy803wb2GUnt+LDSBjdXTzZnZJqgY9j7nyGwTPHOu
vpyaYYJpaXWqFQSPn5sZS0gxwedcztq7l5pAOYDPNj7BBG/zZzfr/2mC64+h
PCbeBGd3zBvXsDbD+9ceMlEvTNCoz6qEQbiZ2PeiIp5Em+CzEwnfpNSbwfkd
/nsQYYLR6veLLGybIaWb5hEcZoLnZ8vXgy42w+Lktr7AUBOcl510motqBsOf
JuSAeyb4O4iT+riWyAfr+ZzrgSZYZjlqdHGpGboEnwtfDjDBwvOdpg/kWkBU
8V2wp68Jal47ZTR0ogU8DOe+n71igr/61bv3JbUAwzGzZtcLJjg6uvHvEc1W
sPG8qHvUwwRXfZam8u60wrPbL5IOu5lgc8n9yMK+VlBOWvCzP2qCHjvr+Nke
tYHzTOwuY1sTlL4p0nzmaTukrNbH6FkR/jBLlrc1tsMS+/eNWhRCXyqPBV4w
dUCI8u5hRWMTvLiD4v3+WgcUe/8IE1Qm8sXsbC9zvhMY74r/4VMwwZOFAlEX
33aCTbS1O5eMCb56bMAzMdMJX0vfwCZRol67qQFFbl3A9W/PwjKnCcaK7Xuw
5twNzluvH1nYTNTjDn9W3LNuSBFPaqBtNMFzGeE393Z2gxF59fX4XxL2+Xmo
B5n1QMh+ac7h3yQ0C93v1XSjB7pP2V8f+EHCS37iuyryesAjJMWhfZaEdUuZ
t/UFe6EopqOqaYaEd2+Jnnxj1QsMb9fk6ydJmLrKe+iYby88a9m7ofoLCf/c
eMvwprsXxof9L5QNkNC9UJNl83ovKC+kDRb2kPDBz3MlT2T74D3Pev7bFhLe
z2o3GrjUB2bBe8fKPpHw7ERl0GwkYf+TvLXhAwlbo2Q/8RcRds/fRr21JBTP
Xr9i29UHHyZszk1UkXCG9ZNz1HwfUA6/frFURsLXlUUJM5v74WPL9waGYhJy
U5b6rCX7gWJq8XNLPgmPnz4xXKVL2ItfSO/IJqHRHdnvpnsIu+LcPsUMEv5K
70kfOUbYX5kE6qWQ8HvLgfkYT8LOF5VrkUDCFxTRDddvEvaQ6eED8SQM+fHj
zt2HhP2vAefJF0R8iuknPj0j7F6PDS5FkzD8iOqs3RvC/m38zK0IEnLUKtRL
p/dDvZP287AwEq5Q2pcP5fQT/ez+x9hQEtYYtfX9KuiHBvKX5Yx7JKSWcqtt
KyHspapSZYEkpKhwSb4rJexKQQ71ASSUK3+yi7eMsL/pu9njS3xvn64j/H87
v2L21ysk1N8RG7RYRNhDA4YWL5GQfmeoOCufsP/rYGO4SMIn0WVNp7MJu7e0
3pazRH4VBbcZEf41TF1zF3En9FFqrktJJOxHmqMUTpAw9jWX0JvYfvjULvZe
9xgJ2/cwDp+N6gcrc+8lijMJI1zquz486ofGso/iBxxJeO6BhFvbXYITzvt7
2ZGwfOeUxLXLxPfba9/etCbh/q2naUfOE/YHfIOPLEhIWw918jtF2BlOs8aS
SZjU/vDP6n/90ORToZ0BJHxbYN7y92A/2MxsOVVqQOTvpdP2DPt+aP7P9elH
HUKPtq9A2pqwdxbVdmuQ8AJ3UEwkhbBTNi+MqxD36ZzW3EEm7BVHRBcVSXhw
kjvxK4mwq+TarMsS/rb8aWAn2CaJ6QbnThJKVXHElv7fLuCYLixOwg8TFTT2
///+UUafvAihr3oLaRkLws74b6OuAAkbQ6X4ZQg92Vxx0KTwEfGaxmTJHeiH
FmqS634uElozrrVaEvqyPfbriSsH8R6fcW5+dbYfWrusazxZSYju+8+b+BJ2
y1ezAcwk9N3f6ER+QNgrl4QfEYOf5rijfVF8P8S6PozU/g3Ifka8IamQYGuN
xb2LgEqCovwiLQRrDu65OAMYFMljJTlN8I7bGQ/GAOsEmaUqNg5ALIvcprQB
wFi152vfpAcgbr71xPsOwPaCV20JlgMQXyuy428tYOEJ81NZUQRnvLsuWA7I
mqruMVlD8FOPXq18wK+kYsFb9AF4dar08YUEwI6Tz+Yf2QyCG4qk87wEbLks
VWXnNwjKwrfrip8Cqq6Eh/dkDUJl++4f/4IAP9ymTDXzf4Z+g89Oj90Br5+b
2+O78hl4eP5J5yoB9uewZmaMfoGBc66wXxpwwUb09lmxYXhd//HQrx2Ad4oH
n4ocHQZl/8cPSFsBGxyYTowMDoP1tPhi+6IxvrkXqMTRNgI85Ltsl6nGyMtw
gktn4ygMxs1ICX41xsbOaWN/yVE4vS//oEu3MQ6dt72c4DwKQdXkysViYzRi
jbvrWj8K1oJpPVE5xhiywVuoaXQUeHw45vXSjLGzPKAz9PcovJbvkQiMMUZ6
YPyjP3Jj4B6kZyATYYymPa/6EmEMlEfi9jeGGqO04Gpj+IExqIp0C+bxM0bD
fMt69ZtjEDTf+LrYxxifXTLcMhYxRvw9Vil3Om+MMtyiXk3JYzC4/pOecNQY
n4R9pNt9GoM3TkdYLByN8SFIvJseGIPTRShGszNGNy9r+YqZMVjxuL9Xw4S4
3/jijS2bxqHqw+zZPj1jPHf5gWk43zgEie+9e0PdGD98/WjtIDEONjeK48UU
jTEjy+u8/a5x4O0VKn0nZYzMBgf6nuiOw6DqzQ53EWMsORHGw08eh4QHX6ns
/MY4rtr6b8RmHFRNMnfsZzHGvwtfVByPjsPPl1w6v/4ZoWuwwByb2zhUr/jY
x/40QnXBsH1858fhrsPAGdKCEd6Jl1q96k3cn2l0Z2LaCPnPinTrXyfu35QQ
GzJmhMHwdJdrAHG/C0ux0qAR1ivVZX4PJO6v9Ghr7zTCjfPh+37cG4cz29um
fZqM8Pmz1JvnQ8dhdCyD3/edEa5dLdgS92gcDmbeM71ZYYQLzzIXDZ6MQ8sV
14tBBUZ4jSe4fF/EOJiZGMfef2uEeW9O+c89HYcKdqFPYYlGOPOGu31b1Dio
9/748fSlEVoVFHzqIzj9dYdkzFMjjDR4y2AUPQ7iZ7Ps4h8YIZvNy5C9BD/T
uu+XeMcIB1P553cSvIXhVHraDSOcW1XQqSV+f7eR1JvlbYSh3GOdmgSvRYow
FZw1wuTD4XGPIsfB+9gvldITRtiVsblrgPCHKt99pMrZCFv3+DHLEeyynHO/
bp8R5gxGbgkm/O+vflBcb22E5YExbCwE2913/9pMNkLzzt+kwvBx+LiPzNVp
YITNW0SF3xBsJCpm1KdhhKfG/zANEVw4vXpmSNEIDaW+u/sQv1cs6I0ekzLC
l/qd4deJ+xL88999EzZCzD0cs0r4J2gZtkDjNcIU4RMWLM/G4QmPx45FdiPk
amVjeBszDpu+mFutMBnhoaNhqSux4xCQKnH1zx9DfOP4K2Tl9Tj88PqbyLBs
iBpZ/PolyeNwznCgfSPdEC8pawaavR2HryxFf9kmDPE53zHT9LxxcOp4osA1
ZIhO4wuH5kvHoePlOUf+bkP03V76SKx2HCzdLIOEmg1RiuvSDZPGcahR3Zkn
9t4Qe5Vcbjh3j4P2n/UvOysN8aRPz/NLI+OQ9eEzm0KhIYb2xQeE0sZh55MS
HZVMQ2z5O3M++dc4vHR6elIzyRBnt4Lue5avwCN9MVwv1hCXd740+Mb/FRjK
ZWjkh4b4q/6UjILOV7gatEFgd5AhCp2tiCHv/gpztsNmtn6GyCDo42V35CsM
fY2KP3TOEIVfy2WK3v0KpZwb9563McQvbnPX/Ee/gkr/aMAlM0M8lx9N3vb7
K6QkVL69amiIpXErWhY8ExCp47MxUMkQN5/dKaZNmQBPl6+l0RyG2LjoJvw8
fwKmFGsmXzIbotLZ0zGU1gk4uvKC582aAR6U9LPnoU6AzYO9597SDbCAfUT4
o8QkvDugHJM7YYDNAj3h4UaToC/O9rFoyAD1GaSlTA5PQi51cqm82wA7mFSa
6n0mQbaoVgybDfDR0Y4dgk8mIeY9173VeT1MfKfurakzDaT61e+Z03r47HP0
bS2Cpz9NuBwb00PBEKs9dgQ/aW5t4x7Uw24X6Y33CdZtKzV636mHs878AzME
j3YkvL3SpIfT7yOWrulOQ3D3Q0H593rIouN7zkhvGpT7rgR/rtTD3hVVK2P9
aegdOP7jUZEefiA/uBhoMA0BQ1YnSNl6OMy4FMVlNA3SI5odSyl6eOduGHne
eBqax0Qh+ZUeyrOL1+40mQafCdYsx+d6eHvP7NYS8jSITC0JsYXroepI6chb
yjS8mxkKqbyvh5fFeoJYrabBg/5x5UKgHib7XZ/r2DMNPPO5JyVu6OGNR1fi
OPZOQ/nii84ubz38pOT5svLgNPE+g0j3zunhpXXwnnSeBtafF7J1T+mh2kFf
2VCXacj9fUiE9p8e1riKqmS5T8OhNdPQuINE/AOr5+0vTAPDutIvOzs9dP3U
pXr58jTYMTN2F5L08Aejlaf53WlYYaGZuOvp4e+CcL+FR9MQv7knR1BdD80j
dyqJPJuGuS3pDwKk9NB+KmpmNmMaormf/lYV0cOUtJLKsKJpMOLzd//KR/g7
tVafjNPwUNCBbMmih+fVShVk+qdBU8Qgb/WfLkqL1Anfm5iGz6LSYlk/dZFx
jhKxe3EaFHb+XuWe0cVoe/vBr+wz0KD8Jv9zky6mlHZyFZjNwEazRYmL4bqo
9fL2WFr1DGRSPj+WCNXFd/9WbWVbZ2D/7g9/uwJ10ZouURX3ZQaSbGMGdH10
MciOc5/T2gyYHjYJ3+Coi5vd7l+/oksFqrPieqGdLg5TBa5ut6BC+FH+8+6W
upjT+y/n3gEqjJ6YsWzW00VfHhEj9KJCwIVwhmgRXQzlt101SaVC7+jS7XQ+
Xcx1/MXIUkSFXfv2M1Vx6OLWr0F1l+qoMKSznWViTQfP5qkpGw1RQSPjWvDP
ZR10W2//HT1NhVCRQVb2WR28dJOpKHyZCnqMcezqX3SQ11JR+RQ7DZ54/3to
3qODtxVB2HAbDaYnj2053KKDYnpetrniNIhulOS+VaWDza1Oyhc1aTBnGBTx
tEgHrUU+vy4zooF5ziRvahbBCu+GX1NosPw0bVtrnA7+rjJYpzjSwIaF7flY
lA5aphT3sxyjQeK1s4I/HumgcfVh91NuNNj7n7KISIAOjs/XfGH0oUF62+M4
lSs6OOP1IdHElwYMpoui5As6OPHw/qDULRrkyBRKeBzVwfqXGv91h9KAJYY/
0f+gDnIyHjBNfkyDo+xXd4bb6mCE9MZPOyJpUOTfn5xE0UGRh+qX4DkNOBb0
ZEuNdZC7IaibPZYGJ11fpjVp6+DbrfAi6BUNKrrX5EeUddB9ROHO2wQa8Fgc
fbsko4O9S/onA5Np4FFWo8QipoMh70hy7Gk0qFOUyBbcTtjZT7dbZNBAMD5Q
ZddWHYztd7+sn0kDT66JXNImHYzkT7aYzKJBQ6C5+v51bRQ+1vDEKocGYj9S
Ctx/auPAilvhuVwaXHFn1boxr400xm1qtnk0aB04Uxw2pY3pbD1vFgmWtmnS
SRjRRp78h9WH82ngV61UVtSnjSeWk/67T3C3apj+pzZtbLPs97lDsGLifMVQ
vTb2O/EJWRMcyO9gtFCjjQV6g0FfifMGg/OrmUq18cIF6y32BKut8pK252rj
qo+keiThT8i5y7UKadrYd1fscQHh7+hwr6nxa21Us1abysumga6D7nuH59ro
d+qA2FMivsfvYsxPPdHGl5d5wJmI3zjtiOXDW9r435jM39x0Qk9C1Z9eXdNG
EsnP3oLI3+xDMesCT2185+jH2JtCg1iv8T2Dx7UxSUOxay6R0NNXctvsIW38
QLF5HEjUw/pgsj2jgzYGnvXMkHhDg4QGlk6+3dro9cSHt4Oo36r+6X1yJkT8
Gma1UfE0cMj61G2gp41TdZeyfOJokCameNBOTRuD8b/WS0T9GSIe9rnKayPf
pzauqJc0cGSeO3RFgohnn5HD6AuiHtMcz7iFtLErUarvOMGRzYo9mTza2FhW
t8ZBcH6uFa8luzZOX4dj0zE0aI884/CVSRsLKWaJKwTPXQt5HLCmhXXi6sIG
xPcc/6W2CP7QQs8BqdVSghVMPrIXzWrhEMcv8Cbut5Se3G3/TQuPFU8WniP8
c9vMHEIb1sIZqS1fUwn/g2YlP97r08LCZ8k8skS8CR0mzJLtWlh6bNaM/poG
tUXHTasatLBpLkX1N5Gv0Zibtw7VamHOK1djO0K///zjq7+XaWGsDsu9+VQa
iLhWrYXla6G1jHHjIKFffcqQvsJbLfwdSLvOTdT3kMKfax8StfC0mmXWU0If
V7YIlRyP1cLMn/HSLkVEPpZ0f/yJ1MKr8pV7rpfRoKDXUePZIy1cvOhg+LmK
Bp3lV7zU72lhny5Pwd06GizER+W0BGhhyeVXUlfraaDk3qXI7KmFnEXrmrKd
NLCyXjrz6rQWOrPGm4z10eC0CneavosWNiQclx/4QoPkn7Y7vfZqYU/M6tsr
VBqIhjSKDGtqIeMR209sLHQwPDfjdH2XFpqw/Wh15KSDkz1rDJ8M4Y/aeMVH
Pjo8E6DwW2/XwlnWnVdWpejAlV7LWfpbE+flxrysyHRgbCz9F16tiXNX3jOQ
A+kgnt1nuKtEE13Kho5O36eDccSKb0OOJnb+3CN1NZwOvk6aP/+91sSUqjej
lNd0WKLmzJ+9o4l66lOXvSqJ89tad23y00RZhxYjqXd0UC6YPZvgo4lbC0+p
Z3+iw9kbitP9pzRRdThOxKqXDhPsqaPmlppI7VBauj5Lh/xjRuqmJE184BGw
3fw7HW4VdN0x1tXEiqvcTAO/6CDizCCrI6eJ0V1+Zw8xzQI1O/qahrgmfvPZ
12TKOgulG3Y1qghoorwAb/p3jlnYn3H4vByrJr75/noqlX8WJP/NV+9k0MSd
sY+7MwRnYcHhHpfELw0UMF+97r1jFqqTRVx3LGhgkvuZdkaJWXj4O79AcFoD
fwRljxzYOQtOe3Zv3DaqgZyPrlVdlJ0FuTcjB3n6NbBUxP+RncIsrCxfTtvS
roFKoi0BP5Rm4b0lxypbgwb+LNdvdlGZhYjYBOtNqIF5jCcqItVm4fiCbhxT
qQa6XFh7GaYxC8pmbXPrORrYYjJXb6c1C2vPTpHWUjVQiF8hoV97Fhppf8J/
vdLAf4Nr0fK6s/AcIr4uP9NABrEGYbLeLLg9ldNafKyBcuXr2dL6s6A5VX1v
NlgDL6ca9ncQvMHgQP/MTQ3UMnCXszSYhfYwmvy3qxr4Ku2f3n2C48dv3xi/
qIGnU3blRRF8TlugZdhdA+mbpY0uEKwfmi36+ZgGbkjMfMZLMOuwmWefowbe
zBq+e484v1ftc22XnQZKnlAbqCf8SbrrxdtuoYHOhwc8+wl/Lw1sOtUMGrj7
JJdOmc4skHbFFzfoaGBB4WfZs0R8W25rsn5Q0cBT0pV75jVnYai78XCtrAYO
C358RyHykyHn8rZKTAMjpW8WXyLyd83v51rZdg0cHRY65UPkl2/nztf5mzTw
5XW+g/+IeoxfLV/MXlfHTZ4W/vflZiG3yZ789qc6bkNVpQXpWbDx9v+WOKWO
d1gVpg+Kz0JQXa9SVL06bugsHanmnYW9284HhNeooybTXLIT1yyIezC1PypR
R66tkwrjhL4quVW976WqY6tW/NPqjbOwfPx+2dVgdbzPNZT5e4UOdYVi7D43
1dHrn48bEHp+wlp8xPOqOkZXv6gInqeDUu74+ml3dcx6EGu8a5oOp9YNKE4W
6ihcq2ouP0iHWEEpET9Qx6WAo6vzxHvp1mBbitMh/JHdOtPZRQez0/1xY7Lq
aKAq2vS7hQ5+gTXeTOLqKCDQWEpuokNhbMpuaQF1DJWKbCxqoAO9+JGYBZc6
RgicK9n7kQ47O3x+nGZVxyc1K1t2vKfDEZpzUyiDOi6IGehur6ND5Ebym8xf
arhPW/UsGenQLKZwtXVBDcU+tWcmVtOBSZ97z8K0Gl5Iwma9Kjro7/8lyTOm
hpLsV49uIvrBpQsjvzQG1DDAOK6Us4IOGSEfWw90qOGGZo+FPeV0GE/ISrr6
SQ3Xy0MGG8roIFQV6RtTq4Zb0hpYbhK8t++GfUWZGjrP9ZZ7Ehy66CrzJU8N
raf11+IIrmO3WvuXrob615VCWIjzVqXVOsUT1LCy3LM3nWB1kkCa6Qs1fLQT
hIKJ+z2c1v1PRqihU9Bu0zjCvzc+3/bdC1XDGYbojTTC//6wFvm0QDUUbq3q
vlDz/35ZuP7JVw0Dk27OyNTSwfLdyx7aJTUMPedgwU30t1tfAt9ynlXDBaXj
NYof6FD688xtlRNqmMo/uuxdT4cFbgdHB2c1tJONcZki+t9xihhTlLUaPlVl
5Tdvo8Pz4ywDxWQ1vKL2PUO+kw7tvrPZ/QZq6BipLK7cQwfIqXASUVLDtE6e
U6Gf6SAqcCg/kUMN+cxeJ+rO0OGgOoR8YFbDgW/h3B/odAizkTk6taaKDV59
3ocW6PDv1vJmxVlVtFDt4Qr5SYcvM09c8ltUsTRrr3c5oVc+5ms63R9U8bRH
5eKuzcR7ED3GuVKliklhps4R/9f33l1letmqKMA483on8R6Wz/E9dk5RxfRP
2/ltt82CUvCfk/7xqqjiJpJ0jOinsRWfuGrDVLHs3tnDGmKz0N2T+238nip+
YsfhRaKfciw8q2S+qYpk/GYYTvRTM7abETJXVTGk3OzLVqKf3tjpdtryoipq
vhInnZOfhXzjPcYe7qqoP3z3d5Ii0e8PafI9PKaKX5W68kp3Ef3cW5ia5aiK
eU//25lCvH+nRxuwzU4Vu9i3i54j+sMhwdS91y1VUf7Ki7k59VlwTLaelDRR
xUWdn4/3EP3loNrC1WY9VeS7vK4cTPTb/VWRbFfUVbHKW4HpJdGP9u3WixNT
VMXKe2F7Qoh+tbfni8onKVW8Mvv8sC3Rz+xdAusuiajipnwbXzrBdrMyB0T4
VXFVlJfdleh/ttebpj5wqqJdT/2FbIJtNnr6XmRRxc2fu7Z0EBwtKS+k/k8F
U0I2HPlE8FP9S3B3XgUj1+ebogl+srfiZP+oCopdWhvQJTjMgzlUsVMFNavu
suQQ9z0I3JMT8E4FJ6rUe38R/oW8iO7uKFTBbbPTnfwE380f+U0kBm/cvnV/
IxFPYKOc2LVnKuga+SW0noj/1riXWVOICipdczrrTPRX/9XyM6K+KthYYV+H
RP58eZgfe51VwZe5Woo/ifxeU9hT+P6ICvZLRJH/Efm/bBo9sN1WBffxH8zs
IepzyWnknweoYFuoy2Z/on4XL8ntrFZVwWofF8ZlGeLvSajXbm5JFbzmyQX6
RP09EsovnORVQb3YgIt2hD7cy5kiS5hVUFsokKwhOgsnO23K2FaUUXz33ouT
QrPgSo0a/m9KGaezWDNPbZ+FI0Jy8syNyqi6d8y2bessHFb3snWsUEZdOaph
KTtRX6ty74xMZbSNXLC+sGkWHHxtqu0fK6M2/e4Ok390sI2I+pp4SxkrmB8+
/+83HWwyhll/einjodKcVMoyHSiDnvvi9itj48q/PQHEeyMvlV1bMFfG14/q
vzZ/pQOJjSmerKOML19v5Zj+QgcD/ajpGUFlpLRHhwV10EH1RZm/9sgu3D7i
UX+kmA678jck3m/fhV4sdlu35dBBodG6Yah2F7LHDXnEp9JBevULz52kXTjn
H7Es+pzoh04b0trO7MK1GOk7K1fowCxk3Xl6WQk3Bgce2rqLDi7cd0QDJpTQ
exOjs5skHapZKzyedivhT4fggPjtdLj2U4GpulAJFYzF66oZ6UDrZtPkvayE
K/keX8R7iPm72fSW3CklLJb6YDj2iQZJ73ybjQ4oYXh8vtjramK/zKeePK2l
hBE9G+oUiP2l83FjVNUPRcyITrZZvEEDleAN452TirjlTkS6pBcNHgboK0/3
KCL7GSu8Quy7lPMZH3mKFVFEXMw2xoHYh0+O88ilKOLp9+zZnhbEPnJE6JhR
tCJuGvj2wI/Yr8usQn+6X1HEZKFrqqYKNNhmWkf2d1NEC+fkGiYJGlzSW30c
cVAR90+LOmwWIOZpOQ+5Km1FLFPdnzTLQoP7Ygk+nTKKKDbMdbDzHxW+bRvE
qW2K+MAmb5TlJxVeb7Q6zPNTAV10/qidnqbC37XbybJTCihhvyH0+RgVnJbL
Fg37FNDbjX1A7DMVSmiLRnvrFVBf9rDAejcV+L7Kh7qXKOCOO4N07TYqeA26
9PqlKqCsgGN6/ScqtHbESEY8U0AvvT82ee+pEIybKyqvKqBlgkjJowoqTJSY
bOp0V0C9c1LLASVUIOVc3zflqIC0w+VsHwuoEJeS92rNQgFZ/jt1xyWXCqtx
MzRuXQU856WWZpdFBccoCV1ZOQVMiNp1LyyDCoUPDwcZCiig5JrwsnAaFbiD
wtsdWBXw6PGH0T+SqXDhxicR91/yuLP12TeBJCo0XWI84zctj67a+Zp3Eqgg
56FXFN4vj1cHxXLU3lDhrosXY2qDPO6imp+WeE2F8UPpeypL5XGt1++w3Ssq
gP1YTEeaPHozxp4pjadCrIXgt2/P5XFgi4DXYYJ/GTuor4XIY1TWNpIKwQe0
7wdwX5fHb5zpr7UJzt9V2yhzRh57xwWOnCN4i/TvbYaH5bG/9gu0EHxWRO2E
w255fE/fInaQuK+B90yOm548cl1U7WMi/JFmf/Pnhrw8svMF7O0iOHDDgEW4
oDxekAh6UEv4P/KbKzJlszw2T3s8biLiM1y0HK34LYeUuPKAuUQqyDT/SR6l
ymGTVioPD5Ef7tTssxuH5JB1ZKGKkkLo5QjfT9tqObRV3LAySOTzScMI53ig
HE4d7Yi5lk0F38SILhYfOdwUX8M1l0OFUwHmMYqn5PBRz6G5U3lU0Nd8u/Oy
hRw2xpvyOxYS9X51xYCVQw7rDWvFhMsJffjKM+76K4uuuYeMbhJ6KDsw9NFh
ThZNdgwZDFVSIYzddO/Ldllcz6q84V9DhWvflrdjrSze07usg0iFE7WpXyby
ZRFh38dftVTQvcp5RjlKFi0ZTv6yJPQmuReV992TxWr+iIfHPlCBc5f38tWr
sqghYdZ15iNRn00y5bGnZXFbgd5J93qivuP9N2sPy+JcF/u4YwMVmqsemH+z
ksX871/+6BN6LnluzM5uKIu+CxJnuBqp8NA2KXq/qCzutey1CW+iwhV5xyPX
t8ri5+p9LobNVHBhZpOMZ5DFSww8TAME24xUTtUtyqCNfCivewsVtMsvZk2N
y6Cz4W+/bwSLR0l6c3TL4H5VTmXHViqwe/boqn2QwRAbKZEyglesQv4dKJZB
nR2vTTiI9zYqbfDeN5X4vQLza3uCGxnm7r96LoMO5EmDewQXfX5t9/6+DKaH
7BLLIvh18T7+GV8Z1GYIcPxAcGg4y2fOczL40WnhVyvBPufKXqv/J4MCTTmC
jQQfszjn5mgrg3dlfnQVE2wlKabkBzKYafCcFEWw5t+OxdeqMrhlk+7jUwSL
9geVfJCQQbNArlFZgjcX6PhTeWSQ9qf7yBDh//IjqulWZhlU/1GqcYfg4dNx
rJo/pJH36KVoEYIbyPath75J43HTq5VpRD4KRJki/fukEdQXR2QJjv9ddDih
QRqTsuRJL4h8hnSfFqsvk8aD/LniDARfyhGepGVIo9iNxKbDRD3+C23N4IqV
xqr06bBUol7qJE1tpwBpVM6yLRQn6ikiPPUn4KI0Dlo97LAh6s2yElObeFwa
ZWe4/C8Qevj8dt1m1lQa/7szAJGEfmTc3uh1q0vjruTvs3cIfXmKk2UqJKXx
seT55DPvqMAcdW89ZIM03uoREhMi9KgUwJm/s24ntlwv7pEh9HxFNyeePX8n
nlvz5Bkm9I9L9g+W3uxE3gGl4ogyKux3jzyJt3ciNbRX9HcxFfzthbcfMdmJ
A+ZCTGPEe2pgq2Iiq+3Eeq6Dj9OJfsjz4eiCvMRO3F123f4G8f6O3GT4wsW9
E5WvKwsdIt5nil7Cp58MO/GMd3eXCdEvF76Ti4cXpDA4Uey6fibxPrMnEz6M
SmH4hI6A2VsqBJ0OfpzZLoWx0cMdx4l+2iop7/cUpZBT4UR/RDoVBL40nvbN
lcLXbFoXhoh+4Prs3AGX11JYf0HxGxCc6bDF1PKJFJZubXlVk0rolT1XWeWW
FH7MVd90lGDSRwfhbZ5SeLa9PmIHwaG3vm/6e0wKGx4Y1jIQ3K0ftfzVTgrT
Ko23sxEs9kN7rBGkEHz/ihgS7JHT35KnIoUhsr7OMQQXnvEtfy4mhd+Pph7e
Sdz/T0ok9eZWKbRIpT8fIdhyuOqp27okzsLLpy2E/xHPj93aMy+Jqb8YSxaI
+Ib2Mp7XHJFEc/tYF2siHzKciYeF2ySxwSFyeITIl2e9GWVDjSTu8uo5kUvk
t/z2N/WZbEnkpcex1xD1YDYMEWuPl0TNo3c7OYn+Zrsiz1ESJolJTN0R8UT9
nuc2/YoLkETHjS82eBP1Hfc4Pxl0QRInOlyyHhJ6UJLe2nn2qCTGKQct0Yn+
Vhuz962esSQKFy/03CX0x7F/+Zm4siSGb/DWQULPB7dEB20SlcTiW0EFZu1U
oAYO/NfzVwI1y9vZdw0S79HohlXlrARmlnL3PxmhQsBPEZ3ELxIYYqT90niS
0Mu541xeVRI4+kZO9fIioReZDX8dsySQgdrw4w8xD6SMJs4Yx0ng5F7xuAZi
XtA/MFXH4S+B96X+Nipx0uCE8YXLaYYSyK375fmEEg1u3c3zGFSSQPJNFSVd
LRrENy8f49ghgU2dzO8rifll0OmGledfcfx2KvmdjR0NHK6GiOlWi+Otm1fs
lHxoALkJn+pBHAW8FvcN1dLgyM/J6t8q4vho5OuhzCYa+BrLFyqKi2PrkzeD
V4j5rLg5J/4xgzhGl6unzU3TwKnz+lR2oBhKPBmx3raVDlpm2Qatd0VxZyRF
m+MgHTw7NWXU3URx4F9EhclROmQer+CKpojiUmQyh40bHST9Gyb/2ySK354q
5g5cpsNRdrv22qkd6KvFGenkT4eYmJ5y6YYduPI25MTbIGL/LR5/PBuyA486
40JpBDEfm53xdTizA3liPf54x9AhuHP+ZNHuHbg7dCT4zyti35xb0/Nn24GX
HOqenc+kA112+wTHQxG0mXTb1VZHB7niuFbPcyLI+Tf1vxFiPz5htrOs20YE
g8dYL5c202HwuFpYLKcIbvtrcfE9sf9umy+5xjAnjIkb9y2tDNDBwd/4xMlW
YfzOJPZikZi3G2KsdZUeC2Ocqs2Y8SQxH8t1Sj65KIy+O/6zC58m9ufiQ5zL
dsKoGHr71lsaHXzNRn46qgpj/vaIk4/m6FDceWq8gksYn/EmzGov0mHpOL1Z
bFEIGd97cqV9J+b1+UsldzqE0GgtuHb0Bx1O+/9+M5UnhKG1tB+jxD6dxH7r
oXWEENKFXiSmEfvDn+NrZ1p9hDD4qGCV6B867C2+ZuHgKITju3SfnFijQxr7
j53deoS9rYLn6l86rB/32uAoIoTrrTy6h4l95GDx7MjAP0F8/FFvafM6UT92
j6ojY4IoFHND/T7BTC7fXoy8E8Sos1eovQQ7Fbtec00RxFRLM4bvBOeyjxyY
DBFEvdZjLl8I3uTirHH6rCBusKpYiSL4aHEfF22PIN61+5AsQnAh+/6586rE
ecH3HLyI+9ld2psWeAQxPTr881PCP9dim3TvHwLoOdYrEUT4X8r+6d5KnwC6
bWhdNyHi2+pifvJ6uQD+2nXSroWI36241mQtVgDNhta/Sf+iQyW7sdjNmwJY
r5b0wnqFDrwu5WuMrgLoff27oTGxX3kUaw8GmQmgBd0m7i+Rf2QvKNkkK4AJ
pD8h9+fpsN1FJSp0swBK6pk3j9Hp8J5dzv5J63b8Gs0UsPKNDsIuSbt487aj
TvvwjXxiH7tULM4e/XQ78vBFzuuN0kHMRfDjy0PbcblS2Tqjnw5XiqMSRQ22
44/y2IqIbjo0s/PcfrNjO4rZ7i8wbyf0UcxmmDq+Ddt2X7NhI/TZzh4sqPBh
Gx7WjPUVJvQr68L0MzN1G957q261UkmHbva1vPxz27A8cfnfpnw6KLpce6xl
tw33eI/dMSb0H1i8fK5UbRu+u/qKZpRCBxWXWdnqFX5kuvSyK5p4P/eKz2w0
GeDH3lEToQXifQ2xfxt/V8GPyusdHdwP6RBaPBz36RY/TslIeWX7////y9t5
e9j4kebFFryHeN8GLjaLjrN8eCaxwIR2gA4RxQ2tg218OF1krb13D6F/l9r7
o5F8uMyjreZvQIcXxfnrNFE+vL2fZXg/Px3sXKJoGzR48YhTC2tlDQ1OXp7f
xsbLiwVVDfssCoh+dH+3Kfd3Huz8vCkkKYUGKXl/n4sV8KAJY2/Q8EMa/GN0
oxhq8GAsc6vga0caZCdov7mswY1mwVK+PjNUeF/8pNmPlxvJrZ8T0ol9arCR
+vPOdy7cabfeP0vMNyzf420jCrjw6vjS+9J8Khwlb1rL1uDCEwZBXsv+xHzm
6CJbzMuFbvHHKg29iP2r70qy79RWnODnsKo9SewLsiN7n7lvxdc/TGuibagg
1JCT1e6+Bb/nDFG2iVOBsnCCeUR2C+qgyouv/MS8JCDgPDvFidsUNnQJcRDz
4+lbrGynOfGusMHdz79nYOWJ5jEBOU6MVC5quLA4A5Jl00Uy0xyYcUbB9+bM
DFzf7HCCfJoDjQ2nhBU+z0CS2sZyBzkOZN8w0t3UPQPth8u4jk+zo9PtlKDV
1hlYu33e/UIaO4ZuiLcu+zQDchkS1X6n2dHiUPMy24cZ2N/Zw/dAjh15z0Qv
LeIM3Fq9fzZmmg3f7lE65lk1A5mSxnWpaWy4VW/mR3D5DPRbLQkUnybsn2L5
9EtngNk75eJ7OTZ0zMsrCy6eAdWXTh87pzejxYjvHa+iGTjybsuOsbTNmPtz
Kedn4QyE0Oq8509vxtVR1h1ChL2Q92rjX7nNOLMS5txP8KiBogTHDCt+ZJJ2
VyuZAY6TI1eF0lnx0iambTvLZkDn4dNWuTOseCGJ2p5dMQOuhRbSOvKsyGUS
l9pWPQNhQ39umM9sQutaZseguhkoZ87t3Je+CZ+4MFg0fpyBb0on5V3PbMKN
XB5P45tmgOeAwC1P+U145sp/LP/aZ8DYv7k3YIYFOa9tlZ/snYHoFs2gl2dY
cDHhna3BxAz8utONU7tYUNvXLk+cNgNO+j5/NZY24ruhbJcLSzMgllpwpdl3
IzZcS36hsYHYD//bVyAAG1Ha1MY6kY3Yx3i/z59k2ojHjSxeneWlQtot9TN/
HzCj+pb+0z+kqcCm05m8254ZSxWtbbNVqHB+1ms8io8Zuew5KrP1iHnaKc9Z
OY4JXSco4T62VKjQULU9lr0BvUy3Gj7/HwXnHU91FwZwZIuUPcre2Xueh2tl
hYzSUkRCRKSoVERCwy5RVkiyUiHXbpjZNGxx75VdGfGe98/v53fuOc8+z+Pn
3it4HiB1xrwIoKkTuGDUtvs2CYU/9fvwR4OmTrprqfrVAxIyZn0F94nUdafK
jD6a4f6sfVpetb6Lqi6XEy0HDZEQUdVZyXT6HzF6yeREhA4ZRTxNLvhx/h8x
qPTjZJApGZmz9ote+rNJFDRz2LC3J6PuaQeufMZNYpKswItmLzKaTLNfZ5Jb
J0r1s/dbpZBRPv3DwKzyNWJmcE3JkSwy8g38QtHRWyNOyJfMwUsy+m1lO+Jt
/Zc4nhygm9pARoxUNk3tfr+JozAlQiCTUZtPnL7H31VimIxkxMYKGT0Yaqvc
Cl8lDpnckI7YIiP+cssCxYcrxOCulGma3fi+9DgQ/6BiiXjuyh3ZbFV8n3ZH
M8jqLxFXp9g3P+H6U4k+hjc0LxK1xzuNawi4PvGZBS73LxBvqRdS0RyioOzU
OyWFS3PE5q0PAjv98H2CRORjGeeIU+ePSJ3F/YrM9NsC330Uoua06KX7oRT0
SnUmS8mCREwuJt0zicL1f/i60B7XWeIeL9OAblw/1W/wpC8HzRC73Q4+kcP1
tbrDNKny2TQxWZebk5BOQdeCfuxOfTNF3Hnv9V3qZxRkKBgcf7l9knj+UkdW
bC4FffDKjdJbGydSOciLMhXjesyuT7tv1zix/4z6x/VSCrJ+0xu+LT5GDL3R
HvXuNQXlMTGuRDz7QbyWOtmdge+H/c6ac2bt34htR1dzmokUVJbjMc28Nkzk
WujnqML3idZS0ki7+BBx+ydAWDMF1aLmwfu2A8SaGTfznR8pyDhu5cuhsD7i
OfEJi3OfKejzsFgrd34PsUelzC0Z90u20oeahnq+EA/VwMv7HRT0gkwbqr3d
SSzOdDI8gu+zyttuvkSnNiJl5YHGwhcKahBpOGlS/JH48VDxM8ceCuqoEbZv
pWsmnjPMT7qD78Nh5+vGdsfriVx01UqxuP9qm6r2LfaqJm4lJrkf//99rcBl
+yreCmLNlJDlP8x/s33Ox94rIMZcPkbxHsDyCHf4mX9NIjKG7D1YgNl478qK
UNZVJLZwPPg15ss84ur7nbLQcHzw6fuYc/t61ZnDSlAzFfseHcxxmTx2W21v
UHcRY3gZ3j/Yy8VnaS8RNZvm56xheV6ldRACNRuRUE588C7M2Vt+dnMjLYgl
3G1mGeuT4rb7pGf0Z9TQ1kfO66ag2I9lPmNKHej9u9zz0lh/XPjfv6R0Icq0
wfGQTgrS+bTeSKrrRkx1ac+S23E/FNr6WSqpFx3ftyR6q5WCFBTSv7h79aOH
XN0f9T/h/m3UZ/CZ/iBKYIkOammhoHQTtmmB6a+I3UTuomE97lf//qAcrvqO
thoHb6vWUtD9wlfLSfEjiFrstPRyFbZ/VD5V9OMx5Jr26M5wOe7/Rtkj8iLH
0V/FeCaaEgrS07nM0Ow3ga41PHr4+wX2H+UAG43xFHLQ9zA0zaagZZOyB8IK
04iNmSD3LIOClDL5uRDvT2RKt+f5R9xPFNqRBcIoM6jszcxy2D0KyqiMlfmd
SEHFXcSNkBAKGuVjMFh6OIduajZIFl2gILGrN+x/3f+FSNP6blnncD8jUq0f
aLqAurzb3QeP4v5y5pWHt9ESav7R7OWH83eTb87fqx6z7e0mogoFPbGUDfWE
ZfQ0r1yuTwbvX5xzz81gBQ0HMtvZ8eD8DUp7e1TnNzL2Sl/Lmsf15Xl/w5F3
v9GRcR2C4hQZFQxytDtr/UFpGwM2UcNkRNGNHzuk8RcdotPezmwiowCaW8xW
KuuIzvHKWmYyGV2753NMT3YL2Vu62JWokpFwfYGHTsEW8uK8UTMiSUb1S9P+
WtLbKNIq5hQVPxnRvCgx4uegguazwkziVGRkwibnzL2bGm69S73r3kZC3M8P
HEuypYYH33fpxOJ5dBqdPcV5nxqeT5r5teB+JPpCrveeXTQQM/QtMzKNhFp7
hcLZWHfAGVNquuqzJJTuaxAZZ7UDRjxsZ6mPk5AP/fGYnbE7wFf+7uotOxJi
03qUyMxCCwI7jwzY6JLQSNfbtDsWtLBglH8oS4mESrwGMhhjaIFp/3tkKklC
do85C+iZ6ID3WoFz4h4SElVTLY40p4OKy8Zd5kwktNRmV04bTQea+xLMT1OR
UOMZ/7e3PtABS650ztSfWZS4Ff+ehoEehFqP5w7Mz6IzKS8bbpjSQ9OeS1N6
M7NIQ6ntA9VtepBp1OnmG5tFA6eYurdoGcAzju6cJe5fAnz0FhEwgJubkxRt
J77/L/mx3whlAAXQC1f5PIvybmQpNlQyQIXjjMQQ7l8gts9mxxIDPCoaTlyv
n0XDyYznjeUZ4fvrz+xpuB8IeqYbF3mWEWzYPLMrcb/AXnS+qCWbEVonJ3kd
cT9RWPmslWGEEQ40j24F4X7DuL6XZM7PBCnT6c/4cT/zo5WBOcaRCTg9tpiN
cX8S0q8j03qfCawY/1It436GY8zXfGcbE5wOFaSVxs+LyU89rRmY4W2fgs0E
ZvPfPbfjjZhBuMdxWhzvP07FkNd5lRmiLV46UnD/FMai08z+jhlexB/n0Mby
cXP7TtqtMMPkDgbEjOUvEX66I0GRBRK+hJaewPpZyPWI9p5jAcZJ0y01rP+U
Or0RVx4LZDw5GnQX93fhoH3KaYwFjpoaiLni/o/f0ic8RXAn2A4b9Jb0zCIb
1+5avoSdwBTVol4zMotmztH9cOnYCWK/WqwvTM+im0Fa/x4zscKTPFvdlLlZ
9CYmQ3dfOCsEhtGwS/+bRfZJX1xOVrNClLdIzV06EqJk0l55+psVLP8Uddix
kZDw63NvRX3ZgASHf63g/reK+GTALZ8N+Dh3xX2SJSGHz12/cybY4GV6UfW8
GgndGdFQl3LZBQHzpd37LEhoLYJ6KEmMHTT5KF9vXyKh06/aHR+x7wbX6Ctp
PsMk9ErNc0pHYTfwbgXQqv4koc13VEFfLXdDuzhnLs0KCaU0qSYKRu2GvbLb
j16y4v5hKK07499uKHtyYOATkJE6rcfBbNIeyI9NkD2QTUYNn0UeEJk5wNbr
WBFdCRnZPvje/VWWA37ZKR5MrCEjn32OTpzeHKDhyDu6r4+McrSMj0eSOSA6
K0y+fAcFqWxvZzxj4YTTrVlHP7Hh+t5cPfpejhNevc6oz+bD85S9qvtvb04Q
Dy2ge6ZAQZy+ot6eFE5oyrYYyMPzUpbqj6JbO7kgf6xH9gOep5TW035l7ucC
CzN+nTxPCrKK2h0w6MMFK/m/72bi+jls3V6+EssFzd2KYe/CKegs551V9pdc
8M/aL/xBNAXdekZ1+cAcF+RppdeHplAQ+9maqjOs3PBYb0QwHtfrDIWQzRvy
3DBl/aL5BO4vqqrnr1f5csOcsXuOLp4fzW++qO+P4wYXNl0wf0tB/eaeO5Zf
csOEW9RvDnyfLPX9uC33ixuKB7jyZ3F/EJ7+6KMZGw+wWbWqruD7i83Nidld
gQcy7IfnavH9ly6zxyrchge04yZFLfD9KrvQHpd+ngeuWtkKJX/F83zlnc63
8TwwP+WqnD1CQaZXTXb3FfMA+8NTuRfwPH2K+X0i6zwPmMbmTh0iUdCvrpB+
mV288Jt9xvTsHAWFpajxmiryQmupoDpaoCDmEwtHTh/khcJhieXBJQpKFS96
fM2PFxqGYprUVylIkuz5/dE9XuByESU5/sH3bamY0JtXvJAwN5WpvUZBRiEj
rj2dvHCKwC88to7nb4PHWfPzvGBg7vrUapOCTtA5T7Kw80F+wUWHsH8URGnd
IymtxAcT33LP+W/h+f1hh6exLR+4fry1S2abghiPxBS4+vOB5xujc3mYk4VM
yWH3+WA21PnpDGbxaWr5tBI+qPNk6J7HXFb0/vzrLj7Yk/h7bw1mFHi55MsC
H5Durzyxxtymrb40x84PU3dunMvB57lQLaoyK/PD8e6XKXVYnpmWoiBJO364
IP7QNAvLGxx39o3RBX6YuPnt3IENCqJ1EF878YAfxPVyRCqxvg/5R3VCS/nh
L/dM8Ay2h/DY47CUL/xw7P3pS///van4uXNt+SI/oO0A+YxlCkp06PqlvVsA
GGUiP8kvUlAo9QGhOiUBoKg3WkX+oqDTxfUHTW0FAJVQN+WQcTwd1Qlv8xOA
A1Q9urEzFKTIWF5if08AUhuJTbpTuF95LTc2WCwAZfR2/uVjFDTBttdoak4A
9JdF4zaGcL9ZnRTgzSoI3rHXNNtwv1Vyli17cb8g3L9nevkM7qeuNWzv2PIW
hJe09ZeXPlAQb/B4MzdJEJZ612yu4njeFj36O51pLyyOVvmkFVHQdGePpJjM
XrB1uRoTnkdB5TLNUYpn94J+RfpqKe5fbL4/P2A+vRecpAYMK65SkFqM8JUO
un3wXTVkWCeYggQ00wodJPbBcqt79sPz2N73Y1hOue8DPW/Fq1U4f28Z+7Zf
Ht8HWYNS9Hv0Kejc4tS/bWohkDxyQcNcDfenGScUbosIgWPx2Y9H5Sho39+D
9x66CsHr/AlHMVwv3r5QsXvxQwgaanleX1wmo0tMYefO+wqD4Oey85G5ZEQ6
+fam8lVhECo4E9nymIxOVK48WokVBrWuh5V7HpKRsZtv65UiYTj3+sSJ4Wtk
tOf9if1RZGGYdx+uu3OEjCI5HhtbbAgDC73HSqQtGf31GjjGyiIC74537i4w
I6MRbtu4BFkRODr6meKvQUZF/oa/Mr1EQMF+LtuFm4weTtDEHQoRAULW6qLr
LjIKcWqSY4gSgfFwXvt0RjIi6Jl5nc8RgWfPrWvebpCQ9CtGRtFyEXglQJue
vor7EdHPeX31ItDnmapePU9CwwzWk3ojItDvZ+hbNElCdVfYbi3MiQD34mZU
+AgJ5c11iuRsisCLMRfnh7j+X+ixP8nCLwp71VT3+n8hISdTzq1aaVG4Nx+q
pNdOQnrv+tIDNEXhQLuDouknEmLMPDw85CAKU8LmLnsaSOjXbv7LcW6iUHSF
90hPLQn1RnzlMQwQhYYbDJTOanxf/UmvXAkXhX0RYyIM70go89wJx/x7ovCF
V2PmUiUJRXwXWjmaIQrtR2TZRCpI6Jzt2MNdL0Uh9H6NMTXu12wbs5Qbq0Vh
4sApKZ4SEtLQcO8K/iwKtbfuqp0qJiHBAgk/2SFR0CBaDnwvIiEawZ+sP36K
goD2E6+7L0hoJj6/6MFvUSgckVA8W4jnc+pzliZ0YrBZonU6AM/rZRflSH85
xEBWWUYpP5+EUn9SootExcBryrqKAfM1l2IpV2UxCDxzQujecxJyb/dr4QAx
KNNwufj/+xwLUD7zwUYMzvQfaGPFrFS+tCP0uBgQPdu1qDFzS1ZkKfiIgbPU
31ZOzBupQYbjV8QgX2A5zRTzKIvmaNIdMfj2ra0qEXPLtb/XDqSKQfiJx5b/
MBctvtv7L08Myhuv+F/D8jx0D60peS0G0sc2HLix/CEDekfdm/B+P/4oNWI+
YbG1xtMjBksXKvVuYX2N3xNTW8fEQA5tNzlge8go3dC8viAGF2Z99mlge7Fl
G/WrbIuBytZkocRLElrhog2aZhWHshd8gyLYvnUbt8us5cSBn/kYuw62f955
cztqHXFosqjXOVRKQrFjTAsV5uIg97TDJBD7y/lDrLyghzjodMoONmB//nr4
MJ/0VBxsTkQuXsP+76VzMMt4JQ7Hua/Vv6wioXchXNN2teIg3LEVO4zjJeJE
qti7r+Lw1b45QxbHk4BsRkYUtwTI8LxguofjLeu9P/dlSQlg7BTKf9mI88GO
EH9OQwJ+G6UyNzaRkFrIzFVrJwnoU+g/09mC44+letXAQwJg9adw8wcSgsw4
X6VgCbDjUBF79ZGErFpUjnMkS8DH21t/j38moe4jdH20eRJwSTx9UKSVhA7P
DVj9fi0BB6Z6RAYx/wgvbPrZLAG/Si5dCMfzhjvnVb2hPgn4YD7qzY/zhfT8
YMXnKQm4HUZ8k4vZX1d0f82qBNzhv8ou+v/7746V7Jd0kmCZICZ5D3PY6Q8C
mVySYKDt+IaCmeZ3WsJ9CUnw3Vq9rdOJ55U7Piw31SUhTX3gWAhmtr3oVqCJ
JBQx8dHnYU4s2b3h7igJO9ctHBsx8xtPBjidwesVSkS6/n9fPlBJMguShO31
HrM2zJLed05rR0rCwydXC95gfrl1dFg2SRJUOQbkH/7/Pvyhgr1griRU3Rmo
O4q5SoL6M+trSdi4m+3EiRne9RhuN0nCDW+nn9VY3harvHcLvZLwYNo4wB6z
1WiI8vikJOxb690cwPp3B1oW9KxIQumjj8lWmA8z7BNpppWCHdlODiXYfj8e
LaRWckpBmIij447/7anQyJ4vLgVkQ986E2xvUn1SdJqaFLT5y328hP3j73iW
6q6xFORZ+eWl4Xr0e0YnJMxBCoR1N/NeYH+GhbEu+LpLgZqD5d5i7G8a9lHP
kxelYG3XB69nOB52aUY6GyVKQVHTO7tjOF6SPzt3quZIwfz1xg1xHE+CJ2TN
JCqkgIkvJGG0HsdXZKcGY68U6Cj2BajieRJ6+Lg7OKShVZ5jjyuO5xYPShxR
TBr+zvjSDr7B+q/X0pWqSgNrdXG5Ba5vh0XcVxMOSQOH8+CKRDmW36+490iC
NFROLaiN4fz7TXPDyjJbGiqc3UqP4vwMSz7UpFcujfNPdPkHzufo93/LhXqk
Iap2z3dGXA/Y7Frldk9Ig/hIr1NFLvb/5JNsmmVpeBtzUzUgB/s/xF9ghUYG