diff --git a/.github/workflows/static_html_deploy.yml b/.github/workflows/static_html_deploy.yml
index fce9f7d..cf1b41a 100644
--- a/.github/workflows/static_html_deploy.yml
+++ b/.github/workflows/static_html_deploy.yml
@@ -46,6 +46,7 @@ jobs:
# which you find below to build all documents
git fetch --tags
cd docs
+ poetry run ipython kernel install --name "boario" --user
poetry run python ./source/build_docs.py
- name: Setup Pages
uses: actions/configure-pages@v5
diff --git a/README.rst b/README.rst
index 93e101b..6cc2c65 100644
--- a/README.rst
+++ b/README.rst
@@ -42,17 +42,17 @@ hesitate to contact the author when using the model !
What is BoARIO ?
=================
-BoARIO, is a python implementation project of the Adaptative Regional Input Output (ARIO) model [`Hallegatte 2013`_].
+BoARIO, is a python implementation project of the Adaptative Regional Input Output (ARIO) model [`Hal13`_].
Its objectives are to give an accessible and inter-operable implementation of ARIO, as well as tools to visualize and analyze simulation outputs and to
evaluate the effects of many parameters of the model.
-This implementation would not have been possible without the `Pymrio`_ module and amazing work of [`Stadler 2021`_] !
+This implementation would not have been possible without the `Pymrio`_ module and amazing work of [`Sta21`_].
-It is still an ongoing project (in parallel of a PhD project).
+It is still an ongoing project (in parallel with a PhD project).
-.. _`Stadler 2021`: https://openresearchsoftware.metajnl.com/articles/10.5334/jors.251/
-.. _`Hallegatte 2013`: https://doi.org/10.1111/j.1539-6924.2008.01046.x
+.. _`Sta21`: https://openresearchsoftware.metajnl.com/articles/10.5334/jors.251/
+.. _`Hal13`: https://doi.org/10.1111/j.1539-6924.2008.01046.x
.. _`Pymrio`: https://pymrio.readthedocs.io/en/latest/intro.html
You can find most academic literature using ARIO or related models `here `_
@@ -63,15 +63,37 @@ What is ARIO ?
ARIO stands for Adaptive Regional Input-Output. It is an hybrid input-output / agent-based economic model,
designed to compute indirect costs from economic shocks. Its first version dates back to 2008 and has originally
-been developed to assess the indirect costs of natural disasters (Hallegatte 2008).
+been developed to assess the indirect costs of natural disasters [`Hal08`_].
In ARIO, the economy is modelled as a set of economic sectors and a set of regions.
Each economic sector produces its generic product and draws inputs from an inventory.
Each sector answers to a total demand consisting of a final demand (household consumption,
public spending and private investments) of all regions (local demand and exports) and
intermediate demand (through inputs inventory resupply). An initial equilibrium state of
-the economy is built based on multi-regional input-output tables (MRIO tables).
+the economy is built based on multi-regional input-output tables (MRIOTs).
+For a more detailed description, please refer to the `Mathematical documentation`_ of the model.
+
+Multi-Regional Input-Output tables
+-------------------------------------
+
+Multi-Regional Input-Output tables (MRIOTs) are comprehensive economic data sets
+that capture inter-regional trade flows, production activities, and consumption
+patterns across different regions or countries. These tables provide a detailed
+breakdown of the flows of goods and services between industries within each
+region and between regions themselves. MRIOTs are constructed through a
+combination of national or regional input-output tables, international trade
+data, and other relevant economic statistics. By integrating data from multiple
+regions, MRIOTs enable the analysis of global supply chains, international trade
+dependencies, and the estimation of economic impacts across regions. However,
+they also come with limitations, such as data inconsistencies across regions,
+assumptions about trade patterns and production technologies, and the challenge
+of ensuring coherence and accuracy in the aggregation of data from various
+sources.
+
+.. _`Mathematical documentation`: https://spjuhel.github.io/BoARIO/boario-math.html
+
+.. _`Hal08`: https://doi.org/10.1111/risa.12090
Where to get BoARIO ?
==========================
@@ -98,18 +120,21 @@ How does BoARIO work?
In a nutshell, BoARIO takes the following inputs :
-- an IO table (such as EXIOBASE3 or EORA26) in the form of an ``pymrio.IOSystem`` object, using the `Pymrio`_ python package.
+- a (possibly Environmentally Extended) Multi-Regional IO table (such as `EXIOBASE 3`_ or `EORA26`_) in the form of an ``pymrio.IOSystem`` object, using the `Pymrio`_ python package. Please reference the `Pymrio documentation `_ for details on methods available to pymrio objects.
- multiple parameters which govern the simulation,
- event(s) description(s), which are used as the perturbation to analyse during the simulation
-And produce the following outputs:
+And produces the following outputs:
- the step by step, sector by sector, region by region evolution of most of the variables involved in the simulation (`production`, `demand`, `stocks`, ...)
- aggregated indicators for the whole simulation (`shortages duration`, `aggregated impacts`, ...)
+.. _`EXIOBASE 3`: https://www.exiobase.eu/
+.. _`EORA26`: https://worldmrio.com/eora26/
+
Example of use
=================
diff --git a/boario/__init__.py b/boario/__init__.py
index c855108..fd1d058 100644
--- a/boario/__init__.py
+++ b/boario/__init__.py
@@ -30,22 +30,58 @@
__version__ = importlib.metadata.version("boario")
__author__ = "sjuhel "
-# __minimum_python_version__ = "3.8"
-
-# Create a logger object.
-logger = logging.getLogger(__name__)
-logger.addHandler(logging.NullHandler())
-
DEBUGFORMATTER = logging.Formatter(
- fmt="%(asctime)s [%(levelname)s] - [%(filename)s > %(funcName)s() > %(lineno)s] - %(message)s",
+ fmt="%(asctime)s - boario - [%(levelname)s] - [%(filename)s > %(funcName)s() > %(lineno)s] - %(message)s",
datefmt="%H:%M:%S",
)
-
"""Debug file formatter."""
+
INFOFORMATTER = logging.Formatter(
- fmt="%(asctime)s [%(levelname)s] - %(message)s",
+ fmt="%(asctime)s - boario - [%(levelname)s] - %(message)s",
datefmt="%H:%M:%S",
)
+"""Info file formatter."""
+
+
+# Create a logger object.
+logger = logging.getLogger(__name__)
+logger.setLevel(logging.INFO)
+
+# Console logger
+ch = logging.StreamHandler()
+ch.setLevel(logging.INFO)
+ch.setFormatter(INFOFORMATTER)
+
+# Avoid adding multiple handlers in case of repeated imports
+if not logger.handlers:
+ logger.addHandler(ch)
+
+
+# Functions to activate/deactivate logging
+def deactivate_logging():
+ """Deactivate logging for the package."""
+ logger.disabled = True
+
+
+def activate_logging():
+ """Activate logging for the package."""
+ logger.disabled = False
+
+
+# Functions to disable/enable console logging
+def disable_console_logging():
+ """Disable console logging for the package."""
+ logger.info(
+ "Disabling logging. You can reenable it with `boario.enable_console_logging()`"
+ )
+ logger.removeHandler(ch)
+
+
+def enable_console_logging():
+ """Enable console logging for the package."""
+ if ch not in logger.handlers:
+ logger.addHandler(ch)
+
try:
import pygit2
@@ -55,12 +91,17 @@
logger.info("You are using boario from branch %s", __git_branch__)
except pygit2.GitError:
logger.info(
- "Could not find git branch, this is normal if you installed boario from pip."
+ "Could not find git branch, this is normal if you installed boario from pip/conda."
)
except ModuleNotFoundError:
logger.info("Unable to tell git branch as pygit2 was not found.")
+logger.info(
+ "Loaded boario module. You can disable logging in console with `boario.disable_console_logging()`."
+)
+
+
@lru_cache(10)
def warn_once(logger, msg: str):
logger.warning(msg)
diff --git a/boario/event.py b/boario/event.py
index d5a3978..092cabe 100644
--- a/boario/event.py
+++ b/boario/event.py
@@ -494,8 +494,11 @@ def from_scalar_regions_sectors(
Event
An Event object or one of its subclass.
"""
+ if not isinstance(impact, (int, float)):
+ raise ValueError("Impact is not scalar.")
+
if impact <= 0:
- raise ValueError("Impact is null")
+ raise ValueError("Impact is null.")
if isinstance(regions, str):
regions = [regions]
diff --git a/boario/model_base.py b/boario/model_base.py
index 5f53619..f06d2d2 100644
--- a/boario/model_base.py
+++ b/boario/model_base.py
@@ -895,7 +895,7 @@ def production_cap(self) -> npt.NDArray:
production_cap = production_cap * self.overprod
if (production_cap < 0).any():
raise ValueError(
- "Production capacity was found negative for at least on industry"
+ "Production capacity was found negative for at least on industry. It may be caused by an impact being to important for a sector."
)
return production_cap
diff --git a/boario/simulation.py b/boario/simulation.py
index 261754d..58b2706 100644
--- a/boario/simulation.py
+++ b/boario/simulation.py
@@ -303,13 +303,14 @@ def __init__(
"n_temporal_units_by_step": self.model.n_temporal_units_by_step,
"year_to_temporal_unit_factor": self.model.iotable_year_to_temporal_unit_factor,
"inventory_restoration_tau": (
- list(self.model.restoration_tau)
+ list(np.reciprocal(self.model.restoration_tau))
if isinstance(self.model, ARIOPsiModel)
else None
),
"alpha_base": self.model.overprod_base,
"alpha_max": self.model.overprod_max,
- "alpha_tau": self.model.overprod_tau,
+ "alpha_tau": self.model.overprod_tau
+ * self.model.iotable_year_to_temporal_unit_factor,
"rebuild_tau": self.model.rebuild_tau,
}
"""dict: A dictionary saving the parameters the simulation was run with."""
@@ -416,7 +417,7 @@ def loop(self, progress: bool = True):
self.model.write_index(self.results_storage / "jsons" / "indexes.json")
self.params_dict["n_temporal_units_simulated"] = self.n_temporal_units_simulated
- self.has_crashed = self.has_crashed
+ self.params_dict["has_crashed"] = self.has_crashed
if self._save_params:
with (
@@ -432,7 +433,10 @@ def loop(self, progress: bool = True):
indent=4,
cls=CustomNumpyEncoder,
)
- logger.info("Loop complete")
+ if self.has_crashed:
+ logger.info("Loop crashed before completion.")
+ else:
+ logger.info("Loop complete")
def next_step(
self,
@@ -551,7 +555,7 @@ def next_step(
):
self._write_rebuild_prod()
except RuntimeError:
- logger.exception("An exception happened:")
+ logger.exception("An exception happened: ")
self.model.matrix_stock.dump(
self.results_storage / "matrix_stock_dump.pkl"
)
diff --git a/docs/source/_static/switcher.json b/docs/source/_static/switcher.json
index 40a0cd1..c7c9e7d 100644
--- a/docs/source/_static/switcher.json
+++ b/docs/source/_static/switcher.json
@@ -1,10 +1,15 @@
[
{
"name": "latest",
- "version": "v0.5.9",
+ "version": "v0.5.10",
"url": "https://spjuhel.github.io/BoARIO/",
"preferred": true
},
+ {
+ "name": "v0.5.9",
+ "version": "v0.5.9",
+ "url": "https://spjuhel.github.io/BoARIO/v0.5.9/en"
+ },
{
"name": "v0.5.8",
"version": "v0.5.8",
diff --git a/docs/source/boario-math.rst b/docs/source/boario-math.rst
index 762ad11..4134008 100644
--- a/docs/source/boario-math.rst
+++ b/docs/source/boario-math.rst
@@ -6,12 +6,12 @@ Model description
Background and overview
=======================
-
+
Adaptive Regional Input-Output (ARIO) is an I-O model, designed to compute indirect
costs from exogenous shocks. Its first version dates back to 2008 and has originally
-been developed to assess the indirect costs of natural disasters (Hallegatte 2008).
+been developed to assess the indirect costs of natural disasters :cite:`2008:hallegatte`.
In this paper we present BoARIO, a generic python implementation, similar to the one
-described in (Hallegatte 2014) with some additions (e.g. inspired by Guan et al. 2020).
+described in :cite:`2013:hallegatte` with some additions (e.g. inspired by :cite:`2020:guan`).
The economy is modelled as a set of economic sectors and a set of regions.
In the following, we call an industry a specific (sector, region) couple.
@@ -23,11 +23,11 @@ An initial equilibrium state of the economy is built based on multi-regional
input-output tables (MRIO tables). Apart from parameters specific to the MRIOT
region-sector typology, BoARIO supposedly handles any MRIOT in the same manner.
-Multiple kinds of shocks can be implemented:
+Multiple kinds of shocks can be implemented:
* On the production capacity directly (one or multiple industries are arbitrarily
forced to produce less)
-* On the productive capital (one or multiple industries arbitrarily
+* On the productive capital (one or multiple industries arbitrarily
lose some part of their factors of production and are thus forced to both
produce less and to build back their capital stock).
* On the households (households of affected regions lose some part of their goods and
@@ -45,7 +45,7 @@ industries adjust their production and orders based on both demand and their inv
Direct economic impact consists in the valuation of the initial exogenous shock,
while total economic impact includes also indirect costs consequent to the propagation.
-Total economic impact can be measured in two ways:
+Total economic impact can be measured in two ways:
* Final demand not met, i.e. goods that households couldn’t buy due to rationing.
* Relative production change, i.e. diminished or increased production of industries relative to their initial production.
diff --git a/docs/source/conf.py b/docs/source/conf.py
index d045fd9..fc557cc 100644
--- a/docs/source/conf.py
+++ b/docs/source/conf.py
@@ -54,6 +54,8 @@
napoleon_use_param = False
napoleon_use_ivar = False
+nbsphinx_kernel_name = "boario"
+
# automatically generate api references
autosummary_generate = ["boario-api-reference.rst"]
diff --git a/docs/source/notebooks/boario-quickstart.ipynb b/docs/source/notebooks/boario-quickstart.ipynb
index 5f98aa2..bee27d9 100644
--- a/docs/source/notebooks/boario-quickstart.ipynb
+++ b/docs/source/notebooks/boario-quickstart.ipynb
@@ -1,32 +1,31 @@
{
"cells": [
{
- "attachments": {},
"cell_type": "markdown",
- "id": "ea635dab-2c7f-40e5-b24e-f2ca9ae00de8",
+ "id": "b4f2960c",
"metadata": {},
"source": [
"# Quickstart example\n",
"\n",
"In the following example, we use the \"test\" MRIOT of the pymrio module,\n",
- "which doesn't require to load additional data and has a low number of sectors and\n",
+ "which doesn't require loading additional data and has a low number of sectors and\n",
"regions, allowing fast computation."
]
},
{
"cell_type": "markdown",
- "id": "e3347cab-34e3-46df-8bb2-ff280010b220",
+ "id": "268d8c43",
"metadata": {},
"source": [
"## Instantiating a model from a MRIOT system\n",
"\n",
- "First import the required elements. We use the ARIOPsiModel version here (which you probably should)."
+ "First import the required elements. We use the ARIOPsiModel version here (which you probably should as well)."
]
},
{
"cell_type": "code",
- "execution_count": 1,
- "id": "dc3e74db-72e0-4dde-bac2-4e6be2d61885",
+ "execution_count": null,
+ "id": "9bc7e315",
"metadata": {},
"outputs": [],
"source": [
@@ -38,16 +37,16 @@
},
{
"cell_type": "markdown",
- "id": "75869ca2-834e-4605-b8aa-e50e2bfa0a31",
+ "id": "132749ea",
"metadata": {},
"source": [
- "Some attributes of the test MRIOT are not computed. Calling calc_all() insure all required tables are present in the IOSystem object."
+ "Some attributes of the test MRIOT are not computed. Calling calc_all() ensures all required tables are present in the IOSystem object. This ``pymrio.IOSystem`` method automatically identifies which tables are missing and calculates them following the IO formal framework. (See [here](https://pymrio.readthedocs.io/en/latest/math.html) for more details.)"
]
},
{
"cell_type": "code",
"execution_count": null,
- "id": "d05964f3-46c6-4a18-ace2-1245b387dfdf",
+ "id": "347595c0",
"metadata": {},
"outputs": [],
"source": [
@@ -56,19 +55,19 @@
},
{
"cell_type": "markdown",
- "id": "d72c86bb-7f99-427c-8ffb-761d4a48c0ae",
+ "id": "b5284dae",
"metadata": {},
"source": [
- "If you see multiple: ``FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.``\n",
- "Don't panic, this comes from `pymrio` but it is not an error, just a synthax warning.\n",
+ "If you see multiple: ``FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do \\`frame.T.groupby(...)\\` without axis instead.``\n",
+ "don't panic, this comes from `pymrio` but it is not an error, just a syntax warning.\n",
"\n",
"In case you find it annoying, you can use the following beforehand:"
]
},
{
"cell_type": "code",
- "execution_count": 3,
- "id": "e8cb2f4a-90db-45c2-a843-2584b933c67a",
+ "execution_count": null,
+ "id": "7a568ae5",
"metadata": {},
"outputs": [],
"source": [
@@ -78,7 +77,7 @@
},
{
"cell_type": "markdown",
- "id": "fdd322f4-801d-4529-9d36-361d682d78ae",
+ "id": "453afa0d",
"metadata": {},
"source": [
"Instantiating the model is very straightforward:"
@@ -86,8 +85,8 @@
},
{
"cell_type": "code",
- "execution_count": 4,
- "id": "dbbaf28c-1395-40b9-8827-b4a67719d530",
+ "execution_count": null,
+ "id": "47d4962d",
"metadata": {},
"outputs": [],
"source": [
@@ -96,7 +95,7 @@
},
{
"cell_type": "markdown",
- "id": "b02e17f9-0c8f-4f2a-bc43-d46689f75990",
+ "id": "1d504000",
"metadata": {},
"source": [
"This sets the model with all the default parameters. We highly recommand you to study the different parameters and their options for actual use. See [Changing the model parameters](../tutorials/model-params.rst)."
@@ -104,7 +103,7 @@
},
{
"cell_type": "markdown",
- "id": "e1032274-d90b-4d0c-bcfc-7187f4faa2d6",
+ "id": "b69c3e85",
"metadata": {},
"source": [
"Similarly, instantiating a simulation is also quite easy:"
@@ -112,8 +111,8 @@
},
{
"cell_type": "code",
- "execution_count": 5,
- "id": "05fd6465-4f25-41a2-9ef6-b87089b4ea2e",
+ "execution_count": null,
+ "id": "3faa2992",
"metadata": {},
"outputs": [],
"source": [
@@ -124,7 +123,7 @@
},
{
"cell_type": "markdown",
- "id": "ec170d85-0ce8-42e9-836b-d340c2c0bfad",
+ "id": "32d06777",
"metadata": {},
"source": [
"Once the model and simulation have been instantiated, you can now define an event:"
@@ -132,8 +131,8 @@
},
{
"cell_type": "code",
- "execution_count": 6,
- "id": "e1039d30-5394-49fb-8755-fb830192f947",
+ "execution_count": null,
+ "id": "649d8dc8",
"metadata": {},
"outputs": [],
"source": [
@@ -153,10 +152,10 @@
},
{
"cell_type": "markdown",
- "id": "70453532-ec2c-4065-a571-25cee5d0977f",
+ "id": "64f06955",
"metadata": {},
"source": [
- "Here we define an event happening in region ``reg1`` impacting the productive capital of the ``manufactoring``[^note-1] and ``mining`` sectors. The impact is distributed among the two sectors proportional to their participation to ``reg1``'s GDP. \n",
+ "Here we define an event happening in region ``reg1`` impacting the productive capital of the ``manufactoring``[^note-1] and ``mining`` sectors. The impact is distributed among the two sectors proportional to their participation to ``reg1``'s GDP.\n",
"\n",
"Here the entire impact is translated into a reconstruction demand, handled by the ``construction`` (55%) and ``manufactoring`` (45%) sectors. This reconstruction has a characteristic time of 90 unit steps.\n",
"\n",
@@ -167,7 +166,7 @@
},
{
"cell_type": "markdown",
- "id": "ffe4839a-906f-48bd-bcaa-29fe6b728d16",
+ "id": "1981ad4e",
"metadata": {},
"source": [
"The event can then be added to the simulation:"
@@ -175,8 +174,8 @@
},
{
"cell_type": "code",
- "execution_count": 7,
- "id": "ba833cbb-5ed0-46c9-bdc5-6cfc38eb919d",
+ "execution_count": null,
+ "id": "d200e2e2",
"metadata": {},
"outputs": [],
"source": [
@@ -186,7 +185,7 @@
},
{
"cell_type": "markdown",
- "id": "79689367-1a04-4b43-a2fc-81d8b3c4ddb5",
+ "id": "526824cc",
"metadata": {},
"source": [
"And the loop can be run:"
@@ -194,27 +193,18 @@
},
{
"cell_type": "code",
- "execution_count": 8,
- "id": "e99a88ca-9c0e-4d73-b513-3e0af572a35d",
+ "execution_count": null,
+ "id": "c07b1032",
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Processed: Step: 730 ~ \u001b[38;2;0;255;0m100%\u001b[39m Time: 0:00:01 \n",
- "Processed: Step: 730 ~ \u001b[38;2;0;255;0m100%\u001b[39m Time: 0:00:01 "
- ]
- }
- ],
+ "outputs": [],
"source": [
"# Launch the simulation\n",
- "sim.loop()"
+ "sim.loop(progress=False)"
]
},
{
"cell_type": "markdown",
- "id": "2abf3a49-5e1c-4d55-bf5e-0db81129b6e0",
+ "id": "e1eb4f5f",
"metadata": {},
"source": [
"Once the simulation ran, you can access and plot the timeseries of the variables (see [Monitoring the variables](../tutorials/simulation-context.rst#monitoring-the-model-variables) for a list of accessible variables).\n",
@@ -224,33 +214,12 @@
},
{
"cell_type": "code",
- "execution_count": 9,
- "id": "2c2add52-72fb-45d7-9f7b-ade044acc0f9",
+ "execution_count": null,
+ "id": "0945f5f9",
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": 9,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAG1CAYAAAD5rf4qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC9DElEQVR4nOzdeVxU9frA8c+wDcOu7LiwKKKoKIbmVrhjdi29ebNfaXJL027uoaaVeS0zNTPLwupq0p65lOW+4Z5boCIiiiAuKCqy78z5/YFMjoCCgsPyvF+veQXnfM/3PGcI5+G7qhRFURBCCCGEqAeMDB2AEEIIIcTDIomPEEIIIeoNSXyEEEIIUW9I4iOEEEKIekMSHyGEEELUG5L4CCGEEKLekMRHCCGEEPWGJD5CCCGEqDck8RFCCCFEvSGJjxBCCCHqjUonPrt372bgwIG4ubmhUqn49ddf73nNrl27eOSRRzA3N8fLy4ulS5eWKrN69Wp8fX1Rq9X4+vqydu1avfNz586lY8eOWFtb4+TkxKBBgzh9+rRemeDgYFQqld6rc+fOlX1EIYQQQtRRlU58srKyaNeuHUuWLKlQ+fj4eAYMGMBjjz1GREQEM2bMYPz48axevVpX5sCBAwwdOpThw4dz7Ngxhg8fzrPPPsvBgwd1ZXbt2sVrr73Gn3/+ydatWyksLKRfv35kZWXp3a9///4kJSXpXhs2bKjsIwohhBCijlI9yCalKpWKtWvXMmjQoHLLTJs2jXXr1nHq1CndsTFjxnDs2DEOHDgAwNChQ0lPT2fjxo26Mv3796dBgwb8+OOPZdZ77do1nJyc2LVrF48//jhQ3OKTmppaoVaosmi1Wi5fvoy1tTUqleq+6hBCCCHEw6UoChkZGbi5uWFkdPc2HZPqDubAgQP069dP71hQUBDLli2joKAAU1NTDhw4wKRJk0qV+fjjj8utNy0tDYCGDRvqHQ8PD8fJyQk7OzsCAwOZM2cOTk5OZdaRl5dHXl6e7vtLly7h6+tbmccTQgghRA1x4cIFGjdufNcy1Z74XLlyBWdnZ71jzs7OFBYWcv36dVxdXcstc+XKlTLrVBSFyZMn0717d9q0aaM7/sQTT/Cvf/0Ld3d34uPjefvtt+nVqxdHjx5FrVaXqmfu3Ln897//LXX8woUL2NjY3M/jCiGEEOIhS09Pp0mTJlhbW9+zbLUnPkCpbqOS3rXbj5dVprzuprFjx3L8+HH27t2rd3zo0KG6r9u0aUNAQADu7u6sX7+ef/7zn6XqmT59OpMnT9Z9X/LG2djYSOIjhBBC1DIVGaZS7YmPi4tLqZab5ORkTExMsLe3v2uZO1uBAMaNG8e6devYvXv3PZuzXF1dcXd358yZM2WeV6vVZbYECSGEEKJuqvZ1fLp06cLWrVv1jm3ZsoWAgABMTU3vWqZr16667xVFYezYsaxZs4YdO3bg6el5z3vfuHGDCxcu4OrqWgVPIoQQQojartKJT2ZmJpGRkURGRgLF09UjIyNJTEwEiruPXnzxRV35MWPGcP78eSZPnsypU6dYvnw5y5YtIyQkRFdmwoQJbNmyhXnz5hETE8O8efPYtm0bEydO1JV57bXX+O677/jhhx+wtrbmypUrXLlyhZycHF1cISEhHDhwgISEBMLDwxk4cCAODg4MHjz4ft4bIYQQQtQxlZ7OHh4eTs+ePUsdHzFiBCtWrCA4OFiXeJTYtWsXkyZN4uTJk7i5uTFt2jTGjBmjd/2qVat46623OHfuHM2aNWPOnDl643LK67f7+uuvCQ4OJicnh0GDBhEREUFqaiqurq707NmTd999lyZNmlTo2dLT07G1tSUtLU3G+AghHrqioiIKCgoMHYYQNZKpqSnGxsZlnqvM5/cDreNT10jiI4QwBEVRuHLlCqmpqYYORYgazc7ODhcXl1KNIZX5/H4os7qEEEKUryTpcXJywsLCQhZQFeIOiqKQnZ1NcnIywAON3ZXERwghDKioqEiX9JTMdBVClKbRaIDiWd9OTk7ldnvdi+zOLoQQBlQypsfCwsLAkQhR85X8njzIWDhJfIQQogaQ7i0h7q0qfk8k8RFCCCFEvSGJjxBCiFrLw8PjrhtaC3EnGdwshBCi1jp8+DCWlpaGDuO+JSQk4OnpSUREBO3btzd0OPWCJD5C1DOKopBfpKWgSCG/UEtBkZZCrYKNuQnW5qaGDk/UE/n5+ZiZmT1wPY6OjlUQTd1QUFCg2wpKlE+6uoSoxfIKi7iQks3R8ylsOJHE1/vi+WBjDCG/HOOVb47w3JcHGLB4D90+2EHbWZtp8eZGPKdvwOetTbR5ZzMd3t3Ko+9vp9sHO+jw7lZ+PJRo6EcSdVSPHj0YO3YskydPxsHBgb59+xIdHc2AAQOwsrLC2dmZ4cOHc/36dd01GRkZvPDCC1haWuLq6sqiRYvo0aOH3nZGd3Z1JSYm8vTTT2NlZYWNjQ3PPvssV69e1Z2fNWsW7du359tvv8XDwwNbW1uee+45MjIyyo39/PnzDBw4kAYNGmBpaUnr1q3ZsGGD7vy9nkOr1TJv3jyaN2+OWq2madOmzJkzB0C376S/vz8qlYoePXrorpk9ezaNGzdGrVbTvn17Nm3apKszISEBlUrFypUr6dGjB+bm5nz33XeV+6HUU9LiI0QNpygKl1JziEnKIP56FvE3sjh/I4uE69lcTsvhQddeNzFSUahVKChSePePaP71SGNMjOVvIlH1wsLCePXVV9m3bx8pKSkEBgYyatQoPvroI3Jycpg2bRrPPvssO3bsAGDy5Mns27ePdevW4ezszMyZM/nrr7/K7RJSFIVBgwZhaWnJrl27KCws5D//+Q9Dhw7V20YpLi6OX3/9lT/++IObN2/y7LPP8sEHH+iSkTu99tpr5Ofns3v3biwtLYmOjsbKygqApKSkez7H9OnT+eqrr1i0aBHdu3cnKSmJmJgYAA4dOkSnTp3Ytm0brVu31rWCLV68mIULF/LFF1/g7+/P8uXLeeqppzh58iTe3t662KZNm8bChQv5+uuvUavVD/TzqS8k8RGiBlEUhYQb2Rw9f5OoS2mcSkrnVFI66bmF5V5jZmyEk40aZxtznG3UOFmb42itxlZjio3GtPi/t7qxLMyMMTMxKn4ZG2FqbISxkYoirYLvzE1k5xdx9lomLV1kyxZR9Zo3b878+fMBmDlzJh06dOD999/XnV++fDlNmjQhNjYWV1dXwsLC+OGHH+jduzdQvDejm5tbufVv27aN48ePEx8fr9uj8dtvv6V169YcPnyYjh07AsWtKStWrMDa2hqA4cOHs3379nITn8TERJ555hnatm0LgJeXl+5caGjoPZ9j8eLFLFmyhBEjRgDQrFkzunfvDvzdVWdvb4+Li4uujg8//JBp06bx3HPPATBv3jx27tzJxx9/zGeffaYrN3HiRL19LcW9SeIjhAEVaRWOX0zlcEIKRxJucvT8TW5k5ZcqZ2KkormTFc2crPC0t8Td3gJPB0vc7S1xsDJ74LUtjI1UtG9ix8H4FI5fSJPER1SLgIAA3ddHjx5l586dupaT28XFxZGTk0NBQQGdOnXSHbe1tcXHx6fc+k+dOkWTJk30Nqb29fXFzs6OU6dO6RIfDw8PXdIDxdsflGyFUJbx48fz6quvsmXLFvr06cMzzzyDn59fhZ4jNTWVvLw8XfJWEenp6Vy+fJlu3brpHe/WrRvHjh3TO3b7eyoqRhIfIR6y5IxcdsdeZ1fsNfacuUZqtv4KpGbGRvg1tsWvsR2tXK3xdbOhuZMVapP7W569otqVJD6XUnm2Y5N7XyBEJd0++0qr1TJw4EDmzZtXqpyrqytnzpwBSi9Yd7d9tRVFKfOPgDuP3zkAWKVSodVqy6135MiRBAUFsX79erZs2cLcuXNZuHAh48aNu+dznDt3rtx676WsZ7/zWG2e0WYokvgI8RAkXM9i/YkkNkYlEXUpXe+ctbkJj3ra09GjAQEeDWjTyLbak5yytG1kC8Dxi2kP/d6i/unQoQOrV6/Gw8MDE5PSH0XNmjXD1NSUQ4cO6Vpw0tPTOXPmDIGBgWXW6evrS2JiIhcuXNBdEx0dTVpaGq1atXqgeJs0acKYMWMYM2aMbszOuHHj7vkc3t7eaDQatm/fzsiRI0udLxnTU1RUpDtmY2ODm5sbe/fu5fHHH9cd379/v14LmLg/kvgIUU0up+awNuISG04kcfKyfrLj19iWwBaOBLZwpH0TuxoxmLhdYzsATiWlk1dYZJDkS9Qfr732Gl999RX/93//x5QpU3BwcODs2bP89NNPfPXVV1hbWzNixAimTJlCw4YNcXJy4p133sHIyKjcrt0+ffrg5+fHCy+8wMcff6wb3BwYGPhAXUITJ07kiSeeoEWLFty8eZMdO3boEql7PYe5uTnTpk1j6tSpmJmZ0a1bN65du8bJkyd5+eWXcXJyQqPRsGnTJho3boy5uTm2trZMmTKFd955h2bNmtG+fXu+/vprIiMj+f777+/7OUQxSXyEqEJ5hUVsi07m5yMX2HPmmm7GlbGRiq7N7BnQ1pW+vs44WNW82RdNGmqwszAlNbuA01cy8LuVCAlRHdzc3Ni3bx/Tpk0jKCiIvLw83N3d6d+/P0ZGxX8IfPTRR4wZM4Z//OMf2NjYMHXqVC5cuIC5uXmZdapUKn799VfGjRvH448/jpGREf379+fTTz+tVGwrVqzg3//+t65braioiNdee42LFy9iY2ND//79WbRoUYWf4+2338bExISZM2dy+fJlXF1dGTNmDAAmJiZ88sknzJ49m5kzZ/LYY48RHh7O+PHjSU9P5/XXXyc5ORlfX1/WrVunN6NL3B+VcrcO03omPT0dW1tb0tLSsLGRwZ2i4i6l5hC2P4Ffjlzg5m1jdh71bMhg/0b0a+1CQ8sHX6ytug1fdpA9Z67z7qA2DO/sbuhw6oXc3Fzi4+Px9PQs9wNdFMvKyqJRo0YsXLiQl19+udruM2vWLMLDw/WmwIuaobzfl8p8fkuLjxAP4Oj5myzfG8+mk1co0hb/DeFiY86QRxoz5JHGeDjUroGH7RrbsefMdY5fSAVJfISBRUREEBMTQ6dOnUhLS2P27NkAPP3009V6382bN7N48eJqvYcwHEl8hKgkRVHYfeY6i7fF8ldiqu54t+b2/LurJz1bOmFs9GDTyw3Fr3HxAOcTl2SAs6gZPvzwQ06fPo2ZmRmPPPIIe/bswcHBoVrveeDAgWqtXxiWJD5CVJCiKOw5c51F22KJuJXwmBkb8XR7N17q7kkr19rfPVoyrif2agbZ+YVYmMk/EcJw/P39OXr0qKHDEHWM/KsmRAUcTkjhg40xHD1/EwC1iRHDO7vzSqAXTtZ1Z1yGi605TtZqkjPyOHk5nY4eDQ0dkhBCVClJfIS4iwsp2XywMYb1J5KA4oRnWGd3RtexhOd2fo3t2HbqKscvpkniI4SocyTxEaIMmXmFfLbzLMv2xpNfqMVIBUM7NmVSH2+cbOpmwlPCr7HtrcQn1dChCCFElZPER4g7bDl5hZm/neRKei4AXZvZ89aTvvi61f4xPBVRMsBZVnAWQtRFkvgIccvV9FxmrTvJxqgrADRtaMHb//ClTyunB94EtDYpGeAcfz2LtJwCbDWmd79ACCFqEUl8RL2nKAqr/7rEf38/SUZuIcZGKl553IsJvb0xN61/2zY0tDSjcQMNF2/mEHUpjW7Nq3fqsBBCPEyG3yBICANKycrn1e/+IuSXY2TkFtKusS2/j+3OtP4t62XSU6Jk365jMs5H3MWNGzdwcnIiISHB0KGISggODmbQoEFVWueSJUt46qmnqrTO6iKJj6i3wk8nE/TxbjadvIKJkYopQT6s+U+3ejOW5250CxnKOB9xF3PnzmXgwIF4eHhU+71yc3MJDg6mbdu2mJiYVPkH98PSo0cPJk6c+FDulZCQgEqlIjIyUu/44sWLWbFiRZXea9SoURw+fJi9e/dWab3VQbq6RL1TWKRl4dZYQsPjAGjuZMXHQ9vTppGtgSOrOdrKAGdxDzk5OSxbtowNGzaUW0ZRFIqKijAxefCPmqKiIjQaDePHj2f16tUPXF9NVpXvW1lsbav+3zq1Ws3zzz/Pp59+Svfu3au8/qokLT6iXknOyGXYsoO6pOfFLu78Ma67JD13aNvIFpWqePPV65l5hg5H1EAbN27ExMSELl266I6Fh4ejUqnYvHkzAQEBqNVq9uzZg6IozJ8/Hy8vLzQaDe3atWPVqlV69ZXsPK7RaOjZsydhYWGoVCpSU1MBsLS0JDQ0lFGjRuHi4nLfcWu1WubNm0fz5s1Rq9U0bdqUOXPm6M6fOHGCXr16odFosLe355VXXiEzM1N3vqSb6MMPP8TV1RV7e3tee+01Cgr+3pz4888/x9vbG3Nzc5ydnRkyZIju2l27drF48WJUKhUqlYqEhIRy37eyuqQmTpxIjx49KvQ8np6eQPEK2CqVSnfdnfXm5eUxfvx4nJycMDc3p3v37hw+fFh3viS+7du3ExAQgIWFBV27duX06dN6sT311FP8+uuv5OTkVP4H8xBJi4+oNw4npPDa93+RnJGHpZkx84b48Q8/N0OHVSNZm5vi5WBJ3LUsjl1IpXcrZ0OHVK8oikJOQdFDv6/G1LjCMxh3795NQEBAmeemTp3Khx9+iJeXF3Z2drz11lusWbOG0NBQvL292b17N8OGDcPR0ZHAwEASEhIYMmQIEyZMYOTIkURERBASElKVj6Yzffp0vvrqKxYtWkT37t1JSkoiJiYGgOzsbPr370/nzp05fPgwycnJjBw5krFjx+p1De3cuRNXV1d27tzJ2bNnGTp0KO3bt2fUqFEcOXKE8ePH8+2339K1a1dSUlLYs2cPUNzFFBsbS5s2bXQbrjo6OurGSN35vj3o8xw6dIhOnTqxbds2WrdujZmZWZl1TJ06ldWrVxMWFoa7uzvz588nKCiIs2fP0rDh34uYvvnmmyxcuBBHR0fGjBnDSy+9xL59+3TnAwICKCgo4NChQwQGBlYofkOQxEfUCyuPXODNtScoKFLwdrIidNgjNHeyMnRYNZp/0wbEXcsiIlESn4ctp6AI35mbH/p9o2cHVXh/toSEBNzcyv7DYfbs2fTt2xeArKwsPvroI3bs2KFrHfLy8mLv3r188cUXBAYGsnTpUnx8fFiwYAEAPj4+REVF6bXEVIWMjAwWL17MkiVLGDFiBADNmjXTdc18//335OTk8M0332BpaQkUD9odOHAg8+bNw9m5+PegQYMGLFmyBGNjY1q2bMmTTz7J9u3bGTVqFImJiVhaWvKPf/wDa2tr3N3d8ff3B4q7mMzMzLCwsCiz1er2960qnsfR0REAe3v7clvJsrKyCA0NZcWKFTzxxBMAfPXVV2zdupVly5YxZcoUXdk5c+boEpo33niDJ598ktzcXMzNixd1tbS0xM7OjoSEhBqd+EhXl6jTtFqFuRtPMXXVcQqKFJ5s68qvr3WTpKcCOjRtAMBfiTcNHImoiXJycnQfeHe6vSUoOjqa3Nxc+vbti5WVle71zTffEBdX3OV8+vRpOnbsqFdHp06dqjzmU6dOkZeXR+/evcs9365dO13SA9CtWze0Wq1et07r1q0xNv571qerqyvJyckA9O3bF3d3d7y8vBg+fDjff/892dnZFYqvvBa0+32eioiLi6OgoIBu3brpjpmamtKpUydOnTqlV9bPz0/3taurK4DuuUtoNJoKP6+hSIuPqLOy8wuZ+FMkW6KvAjC+tzcTe3tjZFR/FiN8EP5N7QA4diGVIq2CsbxvD43G1Jjo2UEGuW9FOTg4cPNm2Unx7YmDVqsFYP369TRq1EivnFqtBoq79u7sYlMUpcKxVJRGo7nr+bLiKHH7cVNT01LnSp7T2tqav/76i/DwcLZs2cLMmTOZNWsWhw8fvmf31e3vG4CRkVGp9+H2sUT3ep6KKKm/rPf/zmO3P3fJuZLnLpGSkqJraaqppMVH1Ek3s/L5v68OsiX6KmbGRnw8tD2T+7aQpKcSWjhbY2lmTFZ+EbFXMwwdTr2iUqmwMDN56K/KrFDu7+9PdHT0Pcv5+vqiVqtJTEykefPmeq8mTZoA0LJlS73BtABHjhyp3JtWASWDp7dv315urJGRkWRlZemO7du3DyMjI1q0aFHh+5iYmNCnTx/mz5/P8ePHSUhIYMeOHQCYmZlRVFSx8VuOjo4kJSXpHbt9avq9nqdkTM/d7te8eXPMzMz0pqEXFBRw5MgRWrVqVaE4S8TFxZGbm6vr2qupJPERdU5SWg7/+uIAxy6kYmdhyo+vPMog/0b3vlDoMTZS0a6JHSDdXaK0oKAgTp48WW6rTwlra2tCQkKYNGkSYWFhxMXFERERwWeffUZYWBgAo0ePJiYmhmnTphEbG8vKlSt1g4lvT8aio6OJjIwkJSWFtLQ0IiMjS61Rczfm5uZMmzaNqVOn6rra/vzzT5YtWwbACy+8gLm5OSNGjCAqKoqdO3cybtw4hg8frhvfcy9//PEHn3zyCZGRkZw/f55vvvkGrVaLj48PAB4eHhw8eJCEhASuX79eqsXkdr169eLIkSN88803nDlzhnfeeYeoqKgKP4+TkxMajYZNmzZx9epV0tJKL09haWnJq6++ypQpU9i0aRPR0dGMGjWK7OxsXn755Qq/twB79uzBy8uLZs2aVeq6h04ROmlpaQqgpKWlGToUcZ/ikjOUrnO3K+7T/lAenbNNOXM13dAh1WoLNsUo7tP+UF5fGWnoUOqsnJwcJTo6WsnJyTF0KJXWuXNnZenSpbrvd+7cqQDKzZs39cpptVpl8eLFio+Pj2Jqaqo4OjoqQUFByq5du3RlfvvtN6V58+aKWq1WevTooYSGhiqA3vvi7u6uAKVeJeLj4xVA2blzZ7kxFxUVKe+9957i7u6umJqaKk2bNlXef/993fnjx48rPXv2VMzNzZWGDRsqo0aNUjIyMnTnR4wYoTz99NN6dU6YMEEJDAxUFEVR9uzZowQGBioNGjRQNBqN4ufnp/z888+6sqdPn1Y6d+6saDQaBVDi4+PLfd8URVFmzpypODs7K7a2tsqkSZOUsWPH6u5Vkef56quvlCZNmihGRka66+58hpycHGXcuHGKg4ODolarlW7duimHDh3SnS8rvoiICF38Jfr166fMnTu33Pe+KpT3+1KZz2+VolRDR2otlZ6ejq2tLWlpadjYyOq9tc2ppHSG/e8gN7Ly8XKw5JuXO9G4gYWhw6rVdsRc5aUVR/BytGTH6z0MHU6dlJubS3x8PJ6enuUOFq6pNmzYQEhICFFRURgZVW0Hwpw5c1i6dCkXLlyo8DXh4eEMHjyYc+fO0aBBgyqNR9xdVFQUvXv3JjY2tloWSCxR3u9LZT6/ZXCzqBNirqTzwv8OkpKVT2s3G8Je6oSDldrQYdV67ZsUf3icu5ZFanY+dhZlrwMi6qcBAwZw5swZLl26pBuvc78+//xzOnbsiL29Pfv27WPBggWMHTu2UnVs2rSJGTNmSNJjAJcvX+abb76p1qSnqkjiI2q901cyeP6r4qTHr7Et3778KLYa03tfKO6poaUZng6WxF/PIuJCKj19nAwdkqhhJkyYUCX1nDlzhvfee4+UlBSaNm3K66+/zvTp0ytVxwcffFAlsYjK69evn6FDqDBJfEStFns1g+e/+pOUrHzaNrLl25ck6alq/k3tihOf8zcl8RHVZtGiRSxatMjQYYh6QGZ1iVrr/I0snv+qeExPm0Y2fPfyo9haSNJT1fxvLWQYcSHVsIEIIUQVkMRH1ErJGbkMX3aI65l5tHKVpKc6dbi1kGFkYiparcyFEELUbpL4iFonPbeAEcsPk5iSTdOGFoS91FEG3VYjH2drLMyMycgr5Exy5r0vEEKIGkwSH1Gr5BYUMSrsCKeS0nGwUvPty51wsq5dU4BrGxNjI/waF8/UiJCFDIUQtZwkPqLW0GoVXl95jIPxKVipTVjx746421ve+0LxwGTDUiFEXSGJj6g1Pt4Wy/oTSZgaq/jyxUdo06jmrxdRV/jrEp9UwwYihBAPqNKJz+7duxk4cCBubm6oVCp+/fXXe16za9cuHnnkEczNzfHy8mLp0qWlyqxevVq3mZ2vry9r167VOz937lw6duyItbU1Tk5ODBo0iNOnT+uVURSFWbNm4ebmhkajoUePHpw8ebKyjyhqoN8iL/HJjrMAvD+4LV2bORg4ovqlZIDz2eRMUrPzDRuMqDFu3LiBk5MTCQkJhg6lyoSHh6NSqUhNTTXI/Sv6uQowa9Ys2rdv/8D37NixI2vWrHngemqLSic+WVlZtGvXjiVLllSofHx8PAMGDOCxxx4jIiKCGTNmMH78eFavXq0rc+DAAYYOHcrw4cM5duwYw4cP59lnn+XgwYO6Mrt27eK1117jzz//ZOvWrRQWFtKvXz+9XXTnz5/PRx99xJIlSzh8+DAuLi707duXjAzZWbo2+yvxJlNWHQdgdKAX/wp4sBViReXZW6nxcizuVjySIN1dotjcuXMZOHAgHh4e1X6v3NxcgoODadu2LSYmJgwaNKja71kVKptIJSUl8cQTT1SobEhIiN7O7MHBwff1vrz99tu88cYbd90wtU55kM3CAGXt2rV3LTN16lSlZcuWesdGjx6tdO7cWff9s88+q/Tv31+vTFBQkPLcc8+VW29ycrIC6Da502q1iouLi/LBBx/oyuTm5iq2trZ6m+jdjWxSWvNcupmtPPLuVsV92h/KyysOK4VFWkOHVG9NW3VMcZ/2h/L++mhDh1Kn1NZNSrOzsxU7Oztl//795ZbRarVKQUFBldwvMzNTGTNmjPLll18qQUFBpTYKrSp32zC0OuvLy8t74HuVtYFqRRQWFipOTk7Khg0bHjiG6lYVm5RW+xifAwcOlFrKOigoiCNHjlBQUHDXMvv37y+33rS0NAAaNmwIFLcsXblyRa8etVpNYGBgufXk5eWRnp6u9xI1R15hEa9+/xfXM/No6WLN4ufaY2ykMnRY9VaAR/Hv2uGEFANHImqCjRs3YmJiQpcuXXTHSlo3Nm/eTEBAAGq1mj179qAoCvPnz8fLywuNRkO7du1YtWqVXn3r1q3D29sbjUZDz549CQsL02spsbS0JDQ0lFGjRuHi4nLfcVckljvt37+fxx9/HI1GQ5MmTRg/frxeb0NeXh5Tp06lSZMmqNVqvL29WbZsGQkJCfTs2ROABg0aoFKpCA4OBqBHjx6MHTuWyZMn4+DgQN++fYHSXV0XL17kueeeo2HDhlhaWhIQEKDrDbm9q2vWrFmEhYXx22+/oVKpUKlUhIeH06tXr1J7nt24cQO1Ws2OHTsAMDY2ZsCAAfz444/3/b7WJtW+ZcWVK1dwdnbWO+bs7ExhYSHXr1/H1dW13DJXrlwps05FUZg8eTLdu3enTZs2uvuUXHdnPefPny+znrlz5/Lf//73vp5LVL85609x7EIqthpTvnoxAEu17LBiSJ1uJT4nLqWRW1CEuamxgSOqwxQFCrIf/n1NLUBVsT8udu/eTUBAQJnnpk6dyocffoiXlxd2dna89dZbrFmzhtDQULy9vdm9ezfDhg3D0dGRwMBAEhISGDJkCBMmTGDkyJFEREQQEhJSlU+mc69Y7nTixAmCgoJ49913WbZsGdeuXWPs2LGMHTuWr7/+GoAXX3yRAwcO8Mknn9CuXTvi4+O5fv06TZo0YfXq1TzzzDOcPn0aGxsbNBqNru6wsDBeffVV9u3bh6KUXhw0MzOTwMBAGjVqxLp163BxceGvv/4qs0sqJCSEU6dOkZ6erourYcOGjBw5krFjx7Jw4ULU6uKNm7///nvc3Nx0SRlAp06dmD9//oO9ubXEQ/kkUd3xi1TyA779eFll7jxWYuzYsRw/fpy9e/dW6F7l1TN9+nQmT56s+z49Pf2BdxgWVeO3yEt8c6A4YV00tB1NGloYOCLRpKEGZxs1V9PziEhMpUsze0OHVHcVZMP7bg//vjMug1nFlohISEjAza3sGGfPnq1rwcjKyuKjjz5ix44dutYhLy8v9u7dyxdffEFgYCBLly7Fx8eHBQsWAODj40NUVBRz5sypgof6W0ViudOCBQt4/vnnmThxIgDe3t588sknBAYGEhoaSmJiIitXrmTr1q306dNHV2eJkl4JJycn7Ozs9Opu3rz5XZONH374gWvXrnH48GFdPc2bNy+zrJWVFRqNhry8PL0WsWeeeYZx48bx22+/8eyzzwLw9ddfExwcrPfZ2KhRIxITE9FqtRgZ1e0J39We+Li4uJRquUlOTsbExAR7e/u7lrmz9QZg3LhxrFu3jt27d9O4cWO9+0Bxy4+rq+s964HirrCSDFjUHLFXM3hj9QkAxvVqTq+WZf/8xMOlUqkI8GjI+uNJHElIkcSnnsvJycHcvOzFQ29vCYqOjiY3N1eXCJXIz8/H398fgNOnT9OxY0e98506dariiCsWy52OHj3K2bNn+f7773XHFEVBq9USHx/PiRMnMDY2LjNpupfyWsxKREZG4u/vr0t67odarWbYsGEsX76cZ599lsjISI4dO1Zq5phGo0Gr1ZKXl6fXKlUXVXvi06VLF37//Xe9Y1u2bCEgIABTU1Ndma1btzJp0iS9Ml27dtV9rygK48aNY+3atYSHh+Pp6alXp6enJy4uLmzdulX3P3B+fj67du1i3rx51fV4oopl5RXy6ndHySkoontzByb2aWHokMRtOt1KfA7JOJ/qZWpR3PpiiPtWkIODAzdvlj3Dz9Ly71ajkm6Z9evX06hRI71yJX94ltUyX1bXz4OqSCxlXTN69GjGjx9f6lzTpk05e/bsfcdz+/tUlqpKQEaOHEn79u25ePEiy5cvp3fv3ri7u+uVSUlJwcLCos4nPXAfiU9mZqbeDzo+Pp7IyEgaNmxI06ZNmT59OpcuXeKbb74BYMyYMSxZsoTJkyczatQoDhw4wLJly/QGUU2YMIHHH3+cefPm8fTTT/Pbb7+xbds2va6s1157jR9++IHffvsNa2trXQuRra0tGo0GlUrFxIkTef/99/H29sbb25v3338fCwsLnn/++ft+g8TD9e4f0cRdy8LFxlwGM9dAHW+N8/nr/E0Ki7SYGNftJnGDUakq3OVkKP7+/nz33Xf3LFeyPltiYmK5rSItW7Zkw4YNeseOHDlSJXFWNpY7dejQgZMnT5bbxdS2bVu0Wi27du3SdXXdzsyseB/BoqKiSsfr5+fH//73P1JSUirU6mNmZlbmfdq2bUtAQABfffUVP/zwA59++mmpMlFRUXTo0KHSMdZKlZ1KVjI1787XiBEjFEUpnk4XGBiod014eLji7++vmJmZKR4eHkpoaGipen/55RfFx8dHMTU1VVq2bKmsXr1a73xZ9wSUr7/+WldGq9Uq77zzjuLi4qKo1Wrl8ccfV06cOFHhZ5Pp7Ia18cRlxX3aH4rHG38o+89eN3Q4ogyFRVqlzcxNivu0P5QTF1MNHU6dUFunsx8/flwxMTFRUlJSdMfKm7r95ptvKvb29sqKFSuUs2fPKn/99ZeyZMkSZcWKFYqiKMq5c+cUU1NTZerUqcrp06eVn3/+WWncuLECKKmpf/9/dvLkSSUiIkIZOHCg0qNHDyUiIkKJiIioVNz3iuXOZzh27Jii0WiU//znP0pERIQSGxur/Pbbb8rYsWN1dQYHBytNmjRR1q5dq5w7d07ZuXOn8vPPPyuKoigXL15UVCqVsmLFCiU5OVnJyMhQFEVRAgMDlQkTJpSKj9uWicnLy1NatGihPPbYY8revXuVuLg4ZdWqVbolBN555x2lXbt2umvnzJmjNG3aVImJiVGuXbum5Ofn6859+eWXipmZmWJnZ1fm/2uBgYHK7NmzK/VeGkJVTGd/oHV86hpJfAwnKTVHafffzYr7tD+UDzaeMnQ44i5GLD+ouE/7Q1m255yhQ6kTamvioyiK0rlzZ7110spLfLRarbJ48WLdH7eOjo5KUFCQbh02RVGU3377TWnevLmiVquVHj16KKGhoQqg9764u7uX+Qdwifj4eAVQdu7cWW7M94qlrGc4dOiQ0rdvX8XKykqxtLRU/Pz8lDlz5ujO5+TkKJMmTVJcXV0VMzMzpXnz5sry5ct152fPnq24uLgoKpVK10hQkcRHURQlISFBeeaZZxQbGxvFwsJCCQgIUA4ePKgoSunEJzk5WRfnne9DRkaGYmFhofznP/8pdc+LFy8qpqamyoULF8p932qKqkh8VIpSDR2ptVR6ejq2trakpaVhY2Nj6HDqDa1WYfjyg+w7e4O2jWxZ/WpXzEykC6Wm+mznWRZsPs0TbVwIHfaIocOp9XJzc4mPj8fT07PcwcI11YYNGwgJCSEqKqrKZwLNmTOHpUuXcuHChQpfEx4ezuDBgzl37hwNGjSo0nhquwsXLuDh4cHhw4dLdWlNmTKFtLQ0vvzySwNFV3Hl/b5U5vNbFkYRBrdsbzz7zt5AY2rMx8+1l6SnhuuoW8jw5l2XixB134ABAzhz5gyXLl164KVAPv/8czp27Ii9vT379u1jwYIFpRbeu5dNmzYxY8YMSXpuU1BQQFJSEm+88QadO3cucxyPk5NTta2bVBNJ4iMM6mxyBgu2FG82O3OgL80crQwckbgXv8a2mBkbcT0zj4Qb2Xg61OxBuKJ6TZgwoUrqOXPmDO+99x4pKSk0bdqU119/nenTp1eqjg8++KBKYqlL9u3bR8+ePWnRokW5K1RPmTLlIUdlWJL4CIMp0ipMXXWc/EItPXwcea6jLB5ZG5ibGtOuiS2HE25yOCFFEh9RJRYtWsSiRYsMHUad06NHj2pZGqA2kz4FYTAr9ifwV2IqVmoT3h/cVrpMapGSfbsOxct6PkKI2kUSH2EQCdezWLA5BoAZA1rhZlf3F82qSx71LE58/jx3w8CRCCFE5UjiIx46rVZh2urj5BZo6drMnv/rJF1ctU1Hj4aYGKm4eDOHCykG2ExTCCHukyQ+4qH74VAiB+NT0Jga88E//aSLqxayVJvg19gWgAPS6iOEqEUk8REP1fXMPOZvKu7iCgnyoam97LpeW5VsUvpnnCQ+QojaQxIf8VDN3RBDem4hrd1sCO7qYehwxAPo4uUAFLf4yKwRIURtIYmPeGgOJ6Sw+q+LALw7qI1sQFrLPeLeAFNjFUlpuZy/IeN86qMbN27g5OREQkKCoUOpMEVReOWVV2jYsCEqlYrIyMhqu1ePHj2YOHGi7vuOHTuyZs2aarufqBhJfMRDUVCk5a21UQD8X6cmdGgqK6vWdhozY/ybFP8cZZxP/TR37lwGDhyIh4dHtd8rNzeX4OBg2rZti4mJCYMGDbqvejZt2sSKFSv4448/SEpKok2bNlUb6F28/fbbvPHGG2i12od2T1GaJD7ioQjbn8Dpqxk0sDBlalBLQ4cjqkjnW+N8Dsg4n3onJyeHZcuWMXLkyHLLKIpCYWFhldyvqKgIjUbD+PHj6dOnz33XExcXh6urK127dsXFxQUTk4e3ju+TTz5JWloamzdvfmj3FKVJ4iOq3dX0XBZtjQXgjSda0sDSzMARiarSxetW4iPjfOqdjRs3YmJiQpcuXXTHwsPDUalUbN68mYCAANRqNXv27EFRFObPn4+XlxcajYZ27dqV2j5h3bp1eHt7o9Fo6NmzJ2FhYahUKlJTUwGwtLQkNDSUUaNG4eLicl8xBwcHM27cOBITE1GpVLqWqry8PMaPH4+TkxPm5uZ0796dw4cP6127a9cuOnXqhFqtxtXVlTfeeEMvqcvKyuLFF1/EysoKV1dXFi5cWOr+xsbGDBgwgB9//PG+4hdVQ7asENVuwebTZOUX4d/Ujn89Imv21CX+Te0wMzHiWkYecdeyaO4ke61VBUVRyCnMeej31ZhoKry8xO7duwkICCjz3NSpU/nwww/x8vLCzs6Ot956izVr1hAaGoq3tze7d+9m2LBhODo6EhgYSEJCAkOGDGHChAmMHDmSiIiIatk0c/HixTRr1owvv/ySw4cPY2xsrIt39erVhIWF4e7uzvz58wkKCuLs2bM0bNiQS5cuMWDAAIKDg/nmm2+IiYlh1KhRmJubM2vWLKB4v6udO3eydu1aXFxcmDFjBkePHqV9+/Z6MXTq1In58+dX+bOJipPER1SrqEtpugHNM//hi5EMaK5TzE2NeaRpAw6cu8GBczck8akiOYU5PPrDow/9vgefP4iFacWWmEhISMDNza3Mc7Nnz6Zv375AcUvIRx99xI4dO3StQ15eXuzdu5cvvviCwMBAli5dio+PDwsWLADAx8eHqKgo5syZUwVP9TdbW1usra0xNjbWtRplZWURGhrKihUreOKJJwD46quv2Lp1K8uWLWPKlCl8/vnnNGnShCVLlqBSqWjZsiWXL19m2rRpzJw5k+zsbJYtW8Y333yje+6wsDAaN25cKoZGjRqRmJiIVqvFyEg6XQxBEh9RbRRFYc76UygKPNXODX8Z0FwndWlmz4FzN/gz7gbDO7sbOhzxkOTk5GBubl7mudtbgqKjo8nNzdUlBCXy8/Px9/cH4PTp03Ts2FHvfKdOnao44rLFxcVRUFBAt27ddMdMTU3p1KkTp06dAuDUqVN06dJFrzWsW7duZGZmcvHiRW7evEl+fr5et1/Dhg3x8fEpdT+NRoNWqyUvLw+NRrbqMQRJfES12XYqmQPnbmBmYsTU/qX/ARB1Q5dm9rC1eN8uRVFkJe4qoDHRcPD5gwa5b0U5ODhw8+bNMs9ZWlrqvi6ZwbR+/XoaNWqkV06tVgOU+f/NwxozVnKfsu5fcuxu8alUqkrFmpKSgoWFhSQ9BiTtbKJa5BdqeX9D8V9LI7t70riBrNBcV7VrbIfG1JgbWfnEXs00dDh1gkqlwsLU4qG/KpO0+vv7Ex0dfc9yvr6+qNVqEhMTad68ud6rSZPiMX8tW7YsNZj4yJEjlXvT7lPz5s0xMzNj7969umMFBQUcOXKEVq1a6Z5h//79egnO/v37sba2plGjRjRv3hxTU1P+/PNP3fmbN28SGxtb6n5RUVF06NChGp9I3IskPqJafH/wPPHXs3CwMuPVHs0MHY6oRmYmRgR4FHdj7jt73cDRiIclKCiIkydPltvqU8La2pqQkBAmTZpEWFgYcXFxRERE8NlnnxEWFgbA6NGjiYmJYdq0acTGxrJy5UpWrFgB6LfEREdHExkZSUpKCmlpaURGRj7wAoSWlpa8+uqrTJkyhU2bNhEdHc2oUaPIzs7m5ZdfBuA///kPFy5cYNy4ccTExPDbb7/xzjvvMHnyZIyMjLCysuLll19mypQpbN++naioKIKDg8scw7Nnzx769ev3QDGLB6QInbS0NAVQ0tLSDB1KrZaWk6+0++9mxX3aH8p3fyYYOhzxEISGn1Xcp/2h/PvrQ4YOpdbJyclRoqOjlZycHEOHUmmdO3dWli5dqvt+586dCqDcvHlTr5xWq1UWL16s+Pj4KKampoqjo6MSFBSk7Nq1S1fmt99+U5o3b66o1WqlR48eSmhoqALovS/u7u4KUOpVIj4+XgGUnTt3lhvzokWLFHd3d71jOTk5yrhx4xQHBwdFrVYr3bp1Uw4d0v9/OTw8XOnYsaNiZmamuLi4KNOmTVMKCgp05zMyMpRhw4YpFhYWirOzszJ//nwlMDBQmTBhgq7MxYsXFVNTU+XChQt3e1vFXZT3+1KZz2+VosjiGyXS09OxtbUlLS0NGxsbQ4dTa320NZZPtp+hmaMlmyc+jomxNCzWdScvp/HkJ3uxMDMmcmY/zEzkZ15Rubm5xMfH4+npWe5g4Zpqw4YNhISEEBUVVeUzlObMmcPSpUu5cOFCha8JDw9n8ODBnDt3jgYNat5kiilTppCWlsaXX35p6FBqrfJ+Xyrz+S2Dm0WVupGZx7I95wB4vZ+PJD31RCsXGxyszLiemc9fiTfpfGthQ1G3DRgwgDNnznDp0iXdeJ379fnnn9OxY0fs7e3Zt28fCxYsYOzYsZWqY9OmTcyYMaNGJj0ATk5O1bI+kagcSXxElVq6K46s/CJau9nQv/X9ra4qah8jIxXdmjvwW+Rl9py5JolPPTJhwoQqqefMmTO89957pKSk0LRpU15//XWmT59eqTo++OCDKomlukyZMsXQIQhkcLOoQlfTc/nmwHkAQvr5yGKF9cxj3o4A7D0jA5xF5S1atIjLly+Tm5tLbGwsb7/99kPdR0vUH5L4iCrz6Y4z5BVqCXBvQA8fR0OHIx6y7s0dADh+KY2bWfkGjkYIIcomiY+oEhdSsvnpUPEgxJAgH1nErh5ysTWnhbMVigL7Zbd2IUQNJYmPqBKLt5+hUKvwmLeDjO+ox0q6u/acuWbgSIQQomyS+IgHdiElm7URlwCY3LeFgaMRhtTdu7i7a8+Z6w9tywEhhKgMSXzEA1u6K46iW609shFp/faoZ0PMjI24lJpD/PUsQ4cjhBClSOIjHsiVtFx+OXIRgLE9mxs4GmFoFmYmPOJenPzukdldQogaSBIf8UC+2nOO/CItHT0a8KiM7RHAYy1KurtknE9dd+PGDZycnEhISDB0KHVGTEwMnTt3xtzcnPbt2xs6nFISEhJQqVQPvEfanUJCQhg/fnyV1lkeSXzEfbuRmccPBxMBeE1ae8Qtj98a4Hwg7gb5hVoDRyOq09y5cxk4cCAeHh7Vfq/c3FyCg4Np27YtJiYmDBo0qNrvaQjvvPMOlpaWnD59mu3bt1dJnR4eHnz88cdVUleTJk1ISkqiTZs2VVJfialTp/L1118THx9fpfWWRRIfcd+W74snp6CIto1sCWwh6/aIYr6uNthbmpGVX8TR83ffuVvUXjk5OSxbtoyRI0eWW0ZRFAoLC6vkfkVFRWg0GsaPH0+fPn2qpM6aKC4uju7du+Pu7o69fc1qRc/Pz8fY2BgXF5cqX1zSycmJfv36sXTp0iqttyyS+Ij7kpZTwDf7i1dpfq1nc1m3R+gYGal0ifDO08kGjkZUl40bN2JiYkKXLl10x8LDw1GpVGzevJmAgADUajV79uxBURTmz5+Pl5cXGo2Gdu3asWrVKr361q1bh7e3NxqNhp49exIWFoZKpSI1NRUAS0tLQkNDGTVqFC4u978dTo8ePRg3bhwTJ06kQYMGODs78+WXX5KVlcW///1vrK2tadasGRs3btRdU1RUxMsvv4ynpycajQYfHx8WL16sV29wcDCDBg3iww8/xNXVFXt7e1577TUKCgp0ZVQqFb/++qvedXZ2dqxYsUJ3/ujRo8yePRuVSsWsWbMAmDZtGi1atMDCwgIvLy/efvttvXpL3r+AgADMzc1xcHDgn//8p+55z58/z6RJk1CpVHr/Vq9evZrWrVujVqvx8PBg4cKFenV6eHjw3nvvERwcjK2tLaNGjSrV1VXyM9++fTsBAQFYWFjQtWtXTp8+rVfXe++9h5OTE9bW1owcOZI33nijVFfeU089xY8//lj+D6+KSOIj7st3f54nI6+QFs5W9PN1NnQ4oobp2dIJgB0xkvjcD0VR0GZnP/RXZZYg2L17NwEBAWWemzp1KnPnzuXUqVP4+fnx1ltv8fXXXxMaGsrJkyeZNGkSw4YNY9euXUDxuJEhQ4YwaNAgIiMjGT16NG+++WaVvJdlCQsLw8HBgUOHDjFu3DheffVV/vWvf9G1a1f++usvgoKCGD58ONnZ2QBotVoaN27MypUriY6OZubMmcyYMYOVK1fq1btz507i4uLYuXMnYWFhrFixQpfUVERSUhKtW7fm9ddfJykpSbehqbW1NStWrCA6OprFixfz1VdfsWjRIt1169ev55///CdPPvkkERERuiQEYM2aNTRu3JjZs2eTlJREUlISAEePHuXZZ5/lueee48SJE8yaNYu33367VLwLFiygTZs2HD16lLfffrvc2N98800WLlzIkSNHMDEx4aWXXtKd+/7775kzZw7z5s3j6NGjNG3alNDQ0FJ1dOrUiQsXLnD+/PkKv2f3QzZCEZWWX6glbH8CAKMfbyZ7colSHvd2xNhIxdnkTC6kZNOkoYWhQ6pVlJwcTnd45KHf1+evo6gsKvazSkhIwM3Nrcxzs2fPpm/fvgBkZWXx0UcfsWPHDl3rkJeXF3v37uWLL74gMDCQpUuX4uPjw4IFC4rj8PEhKiqKOXPmVMFTldauXTveeustAKZPn84HH3yAg4MDo0aNAmDmzJmEhoZy/PhxOnfujKmpKf/9739113t6erJ//35WrlzJs88+qzveoEEDlixZgrGxMS1btuTJJ59k+/btunrvpaQLycrKSq9VqyRWKG6Fef311/n555+ZOnUqAHPmzOG5557Ti7Fdu3YANGzYEGNjY6ytrfXq/Oijj+jdu7cumWnRogXR0dEsWLCA4OBgXblevXrp7Shf3kD2OXPmEBgYCMAbb7zBk08+SW5uLubm5nz66ae8/PLL/Pvf/9a9v1u2bCEzM1OvjkaNGunu4e7uXqH37H5Ii4+otN+PXSY5Iw9nGzUD25X9D5+o32wtTHnk1ppO0t1VN+Xk5GBubl7mudtbgqKjo8nNzaVv375YWVnpXt988w1xcXEAnD59mo4dO+rV0alTp2qL3c/PT/e1sbEx9vb2tG3bVnfM2bm4FTs5+e//d5cuXUpAQACOjo5YWVnx1VdfkZiYqFdv69atMTY21n3v6uqqV8f9WrVqFd27d8fFxQUrKyvefvttvXtHRkbSu3fvStV56tQpunXrpnesW7dunDlzhqKiIt2x8lr17nT7e+rq6gr8/f6dPn261M+zrJ+vRqMB0LW0VRdp8RGVoigKX+05B8CIrh6YmUjuLMrWs6UThxJS2BmTzItdPAwdTq2i0mjw+euoQe5bUQ4ODty8WfbgdUtLS93XWm3xzL7169fr/qIvoVargeJ/V+4cJ1idK3+bmprqfa9SqfSOlcRSEvvKlSuZNGkSCxcupEuXLlhbW7NgwQIOHjx4z3pL6ij5/s7nunOszp3+/PNPXWtOUFAQtra2/PTTT3rjcTSV+LmVqOh7fvvP8m7u9v7dfuxu90pJSQHA0bF6J8tI4iMqZd/ZG8RcyUBjaszznZoaOhxRg/Vs6ci8TTHsj7tBTn4RGjPje18kgOIPiYp2ORmKv78/33333T3L+fr6olarSUxM1HWF3Klly5Zs2LBB79iRI0eqJM6qsGfPHrp27cp//vMf3bGS1qrKcHR01I2xAThz5sw9Wzf27duHu7u73pinO8fA+Pn5sX37dl1X0p3MzMz0WnGg+Oeyd+9evWP79++nRYsWeq1WVcHHx4dDhw4xfPhw3bGyfr5RUVGYmprSunXrKr3/neTPdVEp/9tb3NrzbEBj7CzMDByNqMl8nK1xszUnr1DLn+dkt/a6JigoiJMnT5bb6lPC2tqakJAQJk2aRFhYGHFxcURERPDZZ58RFhYGwOjRo4mJiWHatGnExsaycuVKvZlOJaKjo4mMjCQlJYW0tDQiIyOrfCG9sjRv3pwjR46wefNmYmNjefvttzl8+HCl6+nVqxdLlizhr7/+4siRI4wZM6ZUK1FZ905MTOSnn34iLi6OTz75hLVr1+qVeeedd/jxxx955513OHXqFCdOnGD+/Pm68x4eHuzevZtLly5x/Xrxiuqvv/4627dv59133yU2NpawsDCWLFmiN56nqowbN45ly5YRFhbGmTNneO+99zh+/HipVqA9e/bw2GOP3VcLVmVI4iMq7MzVDMJPX0Olgpe6exo6HFHDqVQqmd1Vh7Vt25aAgIBSM5vK8u677zJz5kzmzp1Lq1atCAoK4vfff8fTs/jfEU9PT1atWsWaNWvw8/MjNDRU18JR0h0GMGDAAPz9/fn9998JDw/H398ff39/3fmSqdbh4eFV+qxjxozhn//8J0OHDuXRRx/lxo0beq0/FbVw4UKaNGnC448/zvPPP09ISAgW92jZe/rpp5k0aRJjx46lffv27N+/v9Tsqh49evDLL7+wbt062rdvT69evfS64WbPnk1CQgLNmjXTdSN16NCBlStX8tNPP9GmTRtmzpzJ7Nmz9QY2V5UXXniB6dOnExISQocOHYiPjyc4OLjUGLEff/yxwgPBH4RKkS2UddLT07G1tSUtLQ0bGxtDh1PjvLH6OD8dvkBQa2e+GF6xAW+iftsWfZWR3xyhcQMNe6b2lPWeypCbm0t8fDyenp7lDhauqTZs2EBISAhRUVEYGVXt39Fz5sxh6dKlXLhwocLXhIeHM3jwYM6dO0eDBrJhck3Wt29fXFxc+Pbbb4HiMWBTpkzh+PHjd10csbzfl8p8fssYH1EhNzLzWBNxCYBRj3kZOBpRW3Rtbo+ZiREXb+ZwNjkTb2drQ4ckqtCAAQM4c+YMly5dokmTJg9U1+eff07Hjh2xt7dn3759LFiwgLFjx1aqjk2bNjFjxgxJemqY7Oxsli5dSlBQEMbGxvz4449s27aNrVu36spkZWXx9ddfV/mK0GWRxEdUyE+HL5BfqKVdY1vd7ttC3IuFmQldvOzZFXuNnaeTJfGpgyZMmFAl9ZSM/UhJSaFp06a8/vrrTJ8+vVJ1fPDBB1USi6haKpWKDRs28N5775GXl4ePjw+rV6/W23rk9vWQqpskPuKeirSKbjPS4V08pLtCVEpPH0d2xV5j+6lkXnm8maHDETXUokWL9FYjFnWHRqNh27Zthg5DRwY3i3vaEZPMpdQc7CxM+Yefq6HDEbVM71bFi8EdOX+Tm1n5Bo5GCFHfVTrx2b17NwMHDsTNza3MDdfKsmvXLh555BHMzc3x8vIqc/fV1atX69Z78PX1LTVdryL3DQ4O1m3CVvLq3LlzZR9R3OGbAwkADA1ogrmprMUiKqdJQwtaudpQpFVkdpcQwuAqnfhkZWXRrl07lixZUqHy8fHxDBgwgMcee4yIiAhmzJjB+PHjWb16ta7MgQMHGDp0KMOHD+fYsWMMHz6cZ599Vm86XkXv279/f91GbElJSaUWxRKVE389iz1nrqNSwQuPVt/eKaJuK9nIdkv0FQNHIoSo7yo9xueJJ57giSeeqHD5pUuX0rRpUz7++GMAWrVqxZEjR/jwww955plnAPj444/p27evbiDb9OnT2bVrFx9//LFui/qK3letVuttxCYezHd/Fq8Q2qOFI03ta/ZKsqLm6tfamcXbz7Ar9pqs4iyEMKhqH+Nz4MAB+vXrp3csKCiII0eO6PYoKa/M/v37K32/8PBwnJycaNGiBaNGjaqSDeLqq5z8In45UryGhuy1JB6Er6sNjew05BZo2Xv2uqHDEULUY9We+Fy5ckW3020JZ2dnCgsLdUtnl1fmypXKNYs/8cQTfP/99+zYsYOFCxdy+PBhevXqRV5eXpnl8/LySE9P13uJv607don03EKaNNQQ2KJ6N40TdZtKpaJvSXfXSenuEkIYzkOZ1VXerqy3Hy+rTGWnTQ8dOpQnn3ySNm3aMHDgQDZu3EhsbCzr168vs/zcuXOxtbXVvR50Aa665rs/i6ewD3vUHSMjmcIuHky/1sWJz7ZTVyks0t6jtKgNbty4gZOTEwkJCYYOpVqFh4ejUqlITU2t8DXBwcEMGjSoSuNITk7G0dGRS5cuVWm99U21Jz4uLi6lWm6Sk5MxMTHB3t7+rmXubAWqLFdXV9zd3Tlz5kyZ56dPn05aWpruVZml0eu6k5fTOHEpDTNjI/4VIAmheHCdPBpiqzHlZnYBR8/ffWNLUTvMnTuXgQMH4uHhUe33ys3NJTg4mLZt22JiYlLlScXddO3alaSkJGxtbSt8zeLFi3UbrVYVJycnhg8fzjvvvFOl9dY31Z74dOnSRW9ZaoAtW7YQEBCg25W2vDJdu3Z9oHvfuHGDCxcu4Opa9tozarUaGxsbvZcotvJwcRLYt7UzDS1lF3bx4EyMjejdqnjT0i3RVw0cjXhQOTk5LFu2jJEjR5ZbRlEUCgsLq+R+RUVFaDQaxo8fr7fi78NgZmaGi4tLpXohbG1tsbOzq/JY/v3vf/P9999z86b88XC/Kp34ZGZmEhkZSWRkJFA8XT0yMpLExOJukenTp/Piiy/qyo8ZM4bz588zefJkTp06xfLly1m2bBkhISG6MhMmTGDLli3MmzePmJgY5s2bx7Zt25g4cWKF75uZmUlISAgHDhwgISGB8PBwBg4ciIODA4MHD67sY9ZruQVF/Bp5GSheu0eIqtLPt3jG5ZboK8j+yOVTFIWCvKKH/qrMz2Tjxo2YmJjQpUsX3bGSLqHNmzcTEBCAWq1mz549KIrC/Pnz8fLyQqPR0K5dO1atWqVX37p16/D29kaj0dCzZ0/CwsL0upcsLS0JDQ1l1KhRDzRzt0ePHowbN46JEyfSoEEDnJ2d+fLLL8nKyuLf//431tbWNGvWjI0bN5Z6rpJYVqxYgZ2dHZs3b6ZVq1ZYWVnpllIpcWdXV48ePRg/fjxTp06lYcOGuLi4MGvWLL3YYmJi6N69O+bm5vj6+rJt27ZS69a1bdsWFxeXUmvdiYqr9HT2I0eO0LNnT933kydPBmDEiBGsWLGCpKQkXTIC4OnpyYYNG5g0aRKfffYZbm5ufPLJJ7qp7FDcjPjTTz/x1ltv8fbbb9OsWTN+/vlnHn300Qrf19jYmBMnTvDNN9+QmpqKq6srPXv25Oeff8baWvYHqozNJ6+QllNAIzsN3Zs7GDocUYc83sIBtYkRF1JyiLmSQStXaWUtS2G+li8n7Hro931lcSCm6ootNbB7924CAgLKPDd16lQ+/PBDvLy8sLOz46233mLNmjWEhobi7e3N7t27GTZsGI6OjgQGBpKQkMCQIUOYMGECI0eOJCIiQu+P46oWFhbG1KlTOXToED///DOvvvoqv/76K4MHD2bGjBksWrSI4cOHk5iYiIVF2ct4ZGdn8+GHH/Ltt99iZGTEsGHDCAkJ4fvvv7/rfSdPnszBgwc5cOAAwcHBdOvWjb59+6LVahk0aBBNmzbl4MGDZGRk8Prrr5dZT6dOndizZw8vvfRSlbwf9U2lE58ePXrc9a+Csvo0AwMD+euvv+5a75AhQxgyZMh931ej0bB58+a73kNUzM+3urmGPNJYBjWLKmVhZsJj3g5sO5XM5pNXJPGpxRISEnBzcyvz3OzZs+nbty9QvPjsRx99xI4dO3StQ15eXuzdu5cvvviCwMBAli5dio+PDwsWLADAx8eHqKgo5syZUy2xt2vXjrfeegso7qX44IMPcHBwYNSoUQDMnDmT0NBQjh8/Xu7q/wUFBSxdupRmzYr3nxs7diyzZ8++6339/Px043O8vb1ZsmQJ27dvp2/fvmzZsoW4uDjCw8N1LVpz5szRvY+3a9SoEREREff38EI2KRX6Em9ksz/uBioV/CugsaHDEXVQ/zaubDuVzIYTSUzs08LQ4dRIJmZGvLI40CD3raicnBzMzc3LPHd7S1B0dDS5ubmlPsDz8/Px9/cH4PTp03Ts2FHvfKdOnSocS2X5+fnpvjY2Nsbe3p62bdvqjpVMrLnbOnAWFha6pAeKJ9Pca9242+975zWnT5+mSZMmet145b0HGo2G7Ozsu95LlE8SH6Hnl6PFrT3dmzvQuIGs1CyqXl9fZ0yNVcRezeTM1Qy8naUr+k4qlarCXU6G4uDgUO4AW0tLS93XWm3x0gXr16+nUaNGeuXUajVQ9vIl1TkGrGRiTQmVSqV3rCSWktgrWse9Yi7rmpJ7VGYJl5SUFBwdZW21+yW7swudIq3CqqMXAXhWBjWLamKrMeUx7+J/tNefSLpHaVFT+fv7Ex0dfc9yJZtPJyYm0rx5c71XydppLVu25PDhw3rXHTlypFrirqlatmxJYmIiV6/+PePxzvekRFRUlK61TFSeJD5CZ/eZaySl5WJnYapbbE6I6jCgbfESE+uPS+JTWwUFBXHy5Ml7Tqu2trYmJCSESZMmERYWRlxcHBEREXz22WeEhYUBMHr0aGJiYpg2bRqxsbGsXLlSN1709laQ6OhoIiMjSUlJIS0tTW+mb23Xt29fmjVrxogRIzh+/Dj79u3jzTffBPTfg+zsbI4ePVpqmydRcZL4CJ2S1p5B7RuhNqnZzeyidivp7jqTnEns1QxDhyPuQ9u2bQkICGDlypX3LPvuu+8yc+ZM5s6dS6tWrQgKCuL333/H09MTKJ79u2rVKtasWYOfnx+hoaG6D/2S7jCAAQMG4O/vz++//054eDj+/v56LR8JCQmoVCrCw8Or9mEfAmNjY3799VcyMzPp2LEjI0eO1A3Avn0s1W+//UbTpk157LHHDBVqradSZDENnfT0dGxtbUlLS6t3ixmm5xbQ8b1t5BVq+WNcd9o0qvgKpULcj5dXHGZ7TDITenszqW/9HeScm5tLfHw8np6e5Q4Wrqk2bNhASEgIUVFRGBlV7d/Rc+bMYenSpZVaUT88PJzBgwdz7tw5GjRoUKXxGMK+ffvo3r07Z8+e1Q2k7tSpExMnTuT55583cHSGUd7vS2U+v2VwswBgU9QV8gq1NHeyorVb/Ur6hGEMaOvK9pji2V31OfGpzQYMGMCZM2e4dOnSA+91+Pnnn9OxY0fs7e3Zt28fCxYsYOzYsZWqY9OmTcyYMaPWJj1r167FysoKb29vzp49y4QJE+jWrZsu6UlOTmbIkCH83//9n4Ejrd0k8REA/BpRvOndYP9Gld4cVoj70cfXGTNjI113VwuZ3VUrTZgwoUrqOXPmDO+99x4pKSk0bdqU119/nenTp1eqjg8++KBKYjGUjIwMpk6dyoULF3BwcKBPnz4sXLhQd97JyYmpU6caMMK6QRIfQVJaDgfO3QDg6fZlL0gmRFUrnt3lwPaYZNYfT6JFX0l86rNFixaxaNEiQ4dhUC+++KLelk+iesjgZsG6yMsoCnTybChr94iH6km/W7O7ZFq7EOIhkcRHsPa2bi4hHqaS7q6zyZnEXEk3dDhCiHpAEp967lRSOjFXMjAzNmJAG1dDhyPqGRtzUwJ9ihcz/C3ysoGjEULUB5L41HMlg5p7tXTC1sL0HqWFqHolLY2/RVxCq5XVNYQQ1UsSn3qsSKvo/soe3EG6uYRh9GrphLXahMtpuRxOSDF0OEKIOk4Sn3rsYPwNrqTnYqsxpYePbHgnDMPc1Jgn2hbvSP1r5CUDRyOEqOsk8anHSvZJeqKNi2xRIQxq0K3urvXHk8grLDJwNKKibty4gZOTEwkJCYYOpdr16NGDiRMnVkvdQ4YM4aOPPqqWukVpkvjUU4VFWjZFXQH+nlIshKF09rTH1dac9NxCdsZcM3Q4ooLmzp3LwIED8fDwqPZ75ebmEhwcTNu2bTExMWHQoEHVcp/w8HBUKhWpqanVUn9ZZs6cyZw5c0hPl5mND4MkPvXUwfgUbmTl08DClC5e9oYOR9RzRkYqnmpXvHhmyYB7UbPl5OSwbNkyRo4cWW4ZRVEoLCyskvsVFRWh0WgYP348ffr0qZI6Da2goAAAPz8/PDw8+P777w0cUf0giU899cetbq7+bVwxMZb/DYThlXR37YhJJi27wMDRGJaiKBTk5j70V2X2rN64cSMmJiZ06dJFd6yktWTz5s0EBASgVqvZs2cPiqIwf/58vLy80Gg0tGvXjlWrVunVt27dOry9vdFoNPTs2ZOwsDC9lhdLS0tCQ0MZNWoULi4u9/3e5uXlMX78eJycnDA3N6d79+4cPnwYKN7dvWfPngA0aNAAlUpFcHCw7lqtVsvUqVNp2LAhLi4uzJo1S6/utLQ0XnnlFZycnLCxsaFXr14cO3ZMd37WrFm0b9+e5cuX4+XlhVqt1r3nTz31FD/++ON9P5eoONmyoh4q7uYqTnz+Id1cooZo5WpDSxdrYq5ksDEqiec6NTV0SAZTmJfHJyOGPPT7jg9bhWkFd4jfvXs3AQEBZZ6bOnUqH374IV5eXtjZ2fHWW2+xZs0aQkND8fb2Zvfu3QwbNgxHR0cCAwNJSEhgyJAhTJgwgZEjRxIREUFISEhVPppebKtXryYsLAx3d3fmz59PUFAQZ8+epUmTJqxevZpnnnmG06dPY2Njg0aj0V0bFhbG5MmTOXjwIAcOHCA4OJhu3brRt29fFEXhySefpGHDhmzYsAFbW1u++OILevfuTWxsLA0bNgTg7NmzrFy5ktWrV2Ns/PfYyk6dOjF37lzy8vJQq9XV8uyimPypXw8dOHeDm9kF2Fua8ahnQ0OHI4TO0+2LW33WSHdXjZeQkICbW9l7+82ePZu+ffvSrFkzzM3N+eijj1i+fDlBQUF4eXkRHBzMsGHD+OKLLwBYunQpPj4+LFiwAB8fH5577jm9lpaqkpWVRWhoKAsWLOCJJ57A19eXr776Co1Gw7JlyzA2NtYlKE5OTri4uGBra6u73s/Pj3feeQdvb29efPFFAgIC2L59OwA7d+7kxIkT/PLLLwQEBODt7c2HH36InZ2dXutWfn4+3377Lf7+/vj5+ek2hW7UqBF5eXlcuXKlyp9b6JMWn3qoZDZXUBsX6eYSNcrT7d2YvzmGQ/EpJN7Ipql9/dw7zkStZnzYqnsXrIb7VlROTg7m5bQO3d4SFB0dTW5uLn379tUrk5+fj7+/PwCnT5+mY8eOeuc7depU4VgqKi4ujoKCArp166Y7ZmpqSqdOnTh16tQ9r/fz89P73tXVleTkZACOHj1KZmYm9vb6YyZzcnKIi4vTfe/u7o6jY+nlQ0palrKzsyv+QOK+SOJTzxQUadl0svgvin+0lW4uUbO42Wno3tyBPWeus+roBSb38zF0SAahUqkq3OVkKA4ODty8ebPMc5aWlrqvtVotAOvXr6dRI/2FUku6dBRF0bV8lKjMeKOKKqmzrHvdeawspqb6q9urVCrd82m1WlxdXQkPDy91nZ2dne7r29+b26WkFC/eWVZSJKqW/LlfzxyIu0FqdgEOVmZ0km4uUQM9G9AEgFVHL1IkW1jUWP7+/kRHR9+znK+vL2q1msTERJo3b673atKk+GfdsmVL3QDjEkeOHKnymJs3b46ZmRl79+7VHSsoKODIkSO0atUKADMzM6B4FllldOjQgStXrmBiYlLqOR0cHO55fVRUFI0bN65QWfFgJPGpZ9brZnNJN5eomfr6OmOrMeVyWi77zl43dDiiHEFBQZw8ebLcVp8S1tbWhISEMGnSJMLCwoiLiyMiIoLPPvuMsLAwAEaPHk1MTAzTpk0jNjaWlStXsmLFCkC/dSY6OprIyEhSUlJIS0sjMjKSyMjICsdsaWnJq6++ypQpU9i0aRPR0dGMGjWK7OxsXn75ZaC4K0qlUvHHH39w7do1MjMzK1R3nz596NKlC4MGDWLz5s0kJCSwf/9+3nrrrQolcXv27KFfv34VfhZx/+STrx4pKNKyOfrWooVtyx6UKIShmZsa6zYuXXnkgoGjEeVp27YtAQEBrFy58p5l3333XWbOnMncuXNp1aoVQUFB/P7773h6egLg6enJqlWrWLNmDX5+foSGhvLmm28C6M1wGjBgAP7+/vz++++Eh4fj7++vGycExQOuVSpVmd1NJT744AOeeeYZhg8fTocOHTh79iybN2+mQYMGQPEg4//+97+88cYbODs7M3bs2Aq9HyqVig0bNvD444/z0ksv0aJFC5577jkSEhJwdna+67W5ubmsXbuWUaNGVehe4sGolOroSK2l0tPTsbW1JS0tDRsbG0OHU+X2n73O8/87iL2lGYfe7IOx0b37tIUwhJOX03jyk72YGRtxcEZvGliaGTqkapObm0t8fDyenp7lDhauqTZs2EBISAhRUVEYGVXt39Fz5sxh6dKlXLhQ8eQ3PDycwYMHc+7cOV0iUxt89tln/Pbbb2zZssXQodR45f2+VObzW1p86pEt0VcB6NPKWZIeUaO1drOltZsN+UVafpONS2usAQMGMHr0aC5devCf0eeff87hw4c5d+4c3377LQsWLGDEiBGVqmPTpk3MmDGjViU9UDxo+tNPPzV0GPWGzOqqJxRFYcut2Vz9Wt+92VWImuDZgCa8s+4kK49cJLibp6HDEeWYMGFCldRz5swZ3nvvPVJSUmjatCmvv/4606dPr1QdH3zwQZXE8rC98sorhg6hXpEWn3ri5OV0LqflYmFmTLfmMmtA1HxPt3fDzMSI6KR0oi6lGTocUc0WLVrE5cuXyc3NJTY2lrfffhsTE/nbXFQ9SXzqic23WnsCWzhibmp8j9JCGJ6dhRlBrYv3ZPr5sAxyFkJUDUl86oktJ4vH90g3l6hNnutYvM7L2ohLZOVVzS7fQoj6TRKfeiDhehanr2ZgbKSil48kPqL26OJlj6eDJZl5hfwWednQ4Qgh6gBJfOqBrbdmc3X2aoithek9SgtRcxgZqXjh0eJd2r/783y1bGMghKhfJPGpB7bcWrSwn6+LgSMRovKGPNIY9a1Bzn8lpho6HCFELSeJTx13PTOPI+eLl5Tv6yvdXKL2sbMw4x9+xSuNf//neQNHI25348YNnJycSEhIMHQoNYqHhwcff/xxhcsvWbKEp556qvoCEnok8anjtp+6iqJA20a2uNlpDB2OEPdleBd3AP44kcTNrHwDRyNKzJ07l4EDB+Lh4VHt98rNzSU4OJi2bdtiYmLCoEGD7queHj16MHHixCqN7UGNGjWKw4cP622eKqqPJD51XMn4nn7S2iNqsXaNbWnTyIb8Qi2/HJWp7TVBTk4Oy5YtY+TIkeWWURSFwsKqmY1XVFSERqNh/Pjx9OnTp0rqLE9Vxl0RarWa559/XlZvfkgk8anDcguK2Htrd+terZwMHI0Q90+lUjHs0eJWn+8PJqLVyiBnQ9u4cSMmJiZ06dJFdyw8PByVSsXmzZsJCAhArVazZ88eFEVh/vz5eHl5odFoaNeuHatWrdKrb926dXh7e6PRaOjZsydhYWGoVCpSU1OB4p3VQ0NDGTVqFC4u9zdeMTg4mF27drF48WJUKhUqlYqEhIRy446Li+Ppp5/G2dkZKysrOnbsyLZt2/TqTE5OZuDAgWg0Gjw9Pfn+++9L3TctLY1XXnkFJycnbGxs6NWrF8eOHdMr89RTT/Hrr7+Sk5NzX88mKk4Snzrsz3M3yC3Q4mJjjq9r3dt0VdQvT7V3w9rchPM3stl95pqhw6lWiqKgzS966K/KzJrbvXs3AQEBZZ6bOnUqc+fO5dSpU/j5+fHWW2/x9ddfExoaysmTJ5k0aRLDhg1j165dQPGu6kOGDGHQoEFERkYyevRo3e7sVWnx4sV06dKFUaNGkZSURFJSEk2aNCk37szMTAYMGMC2bduIiIggKCiIgQMHkpiYqLsmODiYhIQEduzYwapVq/j8889JTk7WnVcUhSeffJIrV66wYcMGjh49SocOHejduzcpKSm6cgEBARQUFHDo0KEqf26hT9YDr8PCTxd/OPRs6YhKJZuSitrNwsyEIY805ut9CXy9L4EePnW3FVMp0HJ55v6Hfl+32V1RmVVsZfeEhATc3NzKPDd79mz69u0LQFZWFh999BE7duzQtQ55eXmxd+9evvjiCwIDA1m6dCk+Pj4sWLAAAB8fH6KiopgzZ04VPNXfbG1tMTMzw8LCosxWo9vjBrC3t6ddu3a679977z3Wrl3LunXrGDt2LLGxsWzcuJE///yTRx99FIBly5bRqlUr3TU7d+7kxIkTJCcno1arAfjwww/59ddfWbVqlW6fLktLS+zs7EhISCAwMLBKn1vok8SnjlIUhR0xxX919KzDHxCifgnu6sGK/Qnsir3G2eQMmjtZGzqkeisnJwdzc/Myz93eEhQdHU1ubq5eQgGQn5+Pv78/AKdPn6Zjx4565zt16lTFEd/bnS1YWVlZ/Pe//+WPP/7g8uXLFBYWkpOTo2vxOXXqFCYmJnrXtWzZEjs7O933R48eJTMzE3t7e726c3JyiIuL0zum0WjIzs6u4qcSd5LEp46Ku5ZFYko2ZsZGsimpqDPc7S3p28qZLdFXWb4vgfcHtzV0SNVCZWqE2+yuBrlvRTk4OHDz5s0yz1laWuq+1mq1AKxfv55GjRrplStpAVEUpVSrtCEWq7w9boApU6awefNmPvzwQ5o3b45Go2HIkCHk5+frxXi3FnWtVourqyvh4eGlzt2eIAGkpKTg6Oj4YA8h7kkSnzoq/HRxa8+jXg2xVMuPWdQdL3X3ZEv0Vdb8dZEp/XxoYGlm6JCqnEqlqnCXk6H4+/vz3Xff3bOcr68varWaxMTEcrtwWrZsyYYNG/SOHTlypErivJOZmRlFRUUVKrtnzx6Cg4MZPHgwAJmZmXprFrVq1YrCwkKOHDmia6E6ffq0bkA2QIcOHbhy5QomJiZ3nfYfFxdHbm6urhVMVB8Z3FxHSTeXqKse9WxIazcbcgu0/HAo8d4XiGoRFBTEyZMny231KWFtbU1ISAiTJk0iLCyMuLg4IiIi+OyzzwgLCwNg9OjRxMTEMG3aNGJjY1m5ciUrVqwA9FtToqOjiYyMJCUlhbS0NCIjI4mMjKxU3B4eHhw8eJCEhASuX7+ua5EqS/PmzVmzZg2RkZEcO3aM559/Xq+8j48P/fv3Z9SoURw8eJCjR48ycuRINJq/10zr06cPXbp0YdCgQWzevJmEhAT279/PW2+9pZfc7dmzBy8vL5o1a1ap5xGVJ4lPHZSRW8DhhOLZAj1bSuIj6haVSsVL3TwB+OZAAvmF5X9wierTtm1bAgICWLly5T3Lvvvuu8ycOZO5c+fSqlUrgoKC+P333/H0LP45enp6smrVKtasWYOfnx+hoaG6WV0l3WEAAwYMwN/fn99//53w8HD8/f31WkgSEhJQqVRldiuVCAkJwdjYGF9fXxwdHfVmaN1p0aJFNGjQgK5duzJw4ECCgoLo0KGDXpmvv/6aJk2aEBgYyD//+U/dtPUSKpWKDRs28Pjjj/PSSy/RokULnnvuORISEnB2/nt9tR9//JFRo0bd870UD06lyK5/Ounp6dja2pKWloaNTe2d/r0pKokx3/2Fp4MlO0N6GDocIapcfqGWbvN2cC0jj0VD2zHYv7GhQ7pvubm5xMfH4+npWe5g4Zpqw4YNhISEEBUVhZFR1f4dPWfOHJYuXcqFCxVfsDI8PJzBgwdz7tw5GjRoUKXxVKeoqCh69+5NbGwstra2hg6nRivv96Uyn9/S4lMHlXRz9fCRQXKibjIzMWLErW0sloafk13bDWTAgAGMHj2aS5cuPXBdn3/+OYcPH+bcuXN8++23LFiwgBEjRlSqjk2bNjFjxoxalfQAXL58mW+++UaSnoek0onP7t27GThwIG5ubqhUKn799dd7XrNr1y4eeeQRzM3N8fLyYunSpaXKrF69WjcIztfXl7Vr11b6voqiMGvWLNzc3NBoNPTo0YOTJ09W9hFrNUVR2Hlr/Z5e0s0l6rDhnT2wNDPm9NUMdp5OvvcFolpMmDBBbxHA+3XmzBmefvppfH19effdd3n99deZNWtWper44IMPmDJlygPH8rD169ePoKAgQ4dRb1Q68cnKyqJdu3YsWbKkQuXj4+MZMGAAjz32GBEREcyYMYPx48ezevVqXZkDBw4wdOhQhg8fzrFjxxg+fDjPPvssBw8erNR958+fz0cffcSSJUs4fPgwLi4u9O3bl4yMjMo+Zq118nI61zLysDAzppNnQ0OHI0S1sbUwZVjn4lafz3fG3aO0qOkWLVrE5cuXyc3NJTY2lrfffhsTE5mRKqreA43xUalUrF279q675E6bNo1169Zx6tQp3bExY8Zw7NgxDhw4AMDQoUNJT09n48aNujL9+/enQYMG/PjjjxW6r6IouLm5MXHiRKZNmwZAXl4ezs7OzJs3j9GjR9/zeerCGJ/Pdp5lwebT9PV15qsXy15OXoi64mp6Lo/N20l+kZZfxnSho0ftS/Zr8xgfIR62WjHG58CBA/Tr10/vWFBQEEeOHKGgoOCuZfbvr/iS7fHx8Vy5ckWvHrVaTWBgYLn15OXlkZ6erveq7XbHFndzPd5CxveIus/ZxpxnHileFO/znWcNHI0Qojao9sTnypUrelP2AJydnSksLOT69et3LXPlypVK3afkuorWM3fuXGxtbXWvquinNqTMvEL+SixeU+Nxb1mtWdQPox9vhpEKdp6+xqmk2v/HixCiej2UWV3lLUV++/GyytzPxpqVqWf69OmkpaXpXpWZNlkTHTx3g4IihaYNLXC3t7z3BULUAR4OljzR1hWApbtkrI8Q4u6qPfFxcXEp1eKSnJyMiYmJbtO28src2Xpzr/sAlapHrVZjY2Oj96rN9pwpbkHrLq09op55NbB4tdvfj10m4XqWgaMRQtRk1Z74dOnSha1bt+od27JlCwEBAZiamt61TNeuFd+kz9PTExcXF7168vPz2bVrV6Xqqc32nLk1vkcSH1HPtGlkSw8fR7QKfLpDxvoIIcpX6cQnMzNTb3+U+Ph4IiMjdct+T58+nRdffFFXfsyYMZw/f57Jkydz6tQpli9fzrJlywgJCdGVmTBhAlu2bGHevHnExMQwb948tm3bxsSJEyt8X5VKxcSJE3n//fdZu3YtUVFRBAcHY2FhwfPPP1/Zx6x1LqfmEHctCyMVdGkmiY+ofyb2aQHA2oiLxEurz0Nx48YNnJyc9DbuFDXbH3/8gb+//133KKvzlErauXOnApR6jRgxQlEURRkxYoQSGBiod014eLji7++vmJmZKR4eHkpoaGipen/55RfFx8dHMTU1VVq2bKmsXr26UvdVFEXRarXKO++8o7i4uChqtVp5/PHHlRMnTlT42dLS0hRASUtLq/A1NcXPhxIV92l/KIM+22voUIQwmH9/fUhxn/aHMunnCEOHUmE5OTlKdHS0kpOTY+hQKu31119XXnrppYdyr5ycHGXEiBFKmzZtFGNjY+Xpp5++r3oCAwOVCRMmVGlsNZW7u7uyaNGiUsf9/f2Vb7/99uEHVAXK+32pzOd3pVeH6tGjx12Xhy/ZUfd2gYGB/PXXX3etd8iQIQwZMuS+7wvFrT6zZs2q9GqfdcHuW91cj3nLNHZRf03o7c2OmGR+jbjE2J7N8XK0MnRIdVZOTg7Lli1jw4YN5ZZRFIWioqIqWYiwqKgIjUZTagHc6lCVcRtCfn4+ZmZm5Z7/97//zaeffsqwYcMeYlQ1h+zVVQcUaRX2ni0e2Czje0R91q6JHb1bOslYn4dg48aNmJiY0KVLF92x8PBwVCoVmzdvJiAgALVazZ49e1AUhfnz5+Pl5YVGo6Fdu3asWrVKr75169bh7e2NRqOhZ8+ehIWFoVKpSE1NBcDS0pLQ0FBGjRqlm8xSWcHBwezatYvFixejUqlQqVQkJCSUG3dcXBxPP/00zs7OWFlZ0bFjR7Zt26ZXp4eHB++//z4vvfQS1tbWNG3alC+//FJ3Pj8/n7Fjx+Lq6oq5uTkeHh7MnTtXd16lUhEaGsoTTzyBRqPB09OTX375Re8eJ06coFevXmg0Guzt7XnllVfIzMzUe65BgwYxd+5c3NzcaNGiBT169OD8+fNMmjRJ96wlnnrqKQ4dOsS5c+fu632s7STxqQNOXk4jNbsAK7UJ7ZrYGTocIQyqZKzPb5GXiLuWeY/SNZOiKOTn5z/0171a1W+3e/duAgLKXh1+6tSpzJ07l1OnTuHn58dbb73F119/TWhoKCdPnmTSpEkMGzaMXbt2AZCQkMCQIUMYNGgQkZGRjB49mjfffLNK3svbLV68mC5dujBq1CiSkpJISkrSW7/tzrgzMzMZMGAA27ZtIyIigqCgIAYOHKgbW1pi4cKFBAQEEBERwX/+8x9effVVYmJiAPjkk09Yt24dK1eu5PTp03z33Xd4eHjoXf/222/zzDPPcOzYMYYNG8b//d//6XY7yM7O1u1kcPjwYX755Re2bdvG2LFj9erYvn07p06dYuvWrfzxxx+sWbOGxo0bM3v2bN2zlnB3d8fJyYk9e/ZU5dtba9TOdjyhp2Qae5dm9pgaSy4r6re2jW3p08qZbaeu8sn2Myx+zt/QIVVaQUEB77///kO/74wZM+7aRXK7hIQE3Nzcyjw3e/Zs+vbtCxTvs/jRRx+xY8cOXeuQl5cXe/fu5YsvviAwMJClS5fi4+PDggULAPDx8SEqKoo5c+ZUwVP9zdbWFjMzMywsLMpsNbo9bgB7e3vatWun+/69995j7dq1rFu3Ti/xGDBgAP/5z3+A4m2aFi1aRHh4OC1btiQxMRFvb2+6d++OSqXC3d291H3/9a9/MXLkSADeffddtm7dyqeffsrnn3/O999/T05ODt988w2WlsXrsy1ZsoSBAwcyb9483XItlpaW/O9//9P7+RkbG2NtbV3mszZq1KjeDkqXT8k6QKaxC6FvYh9vANYdu0z0ZVnNuTrk5OSUu7fY7S1B0dHR5Obm0rdvX6ysrHSvb775hri44gUnT58+TceOHfXq6NSpU/UFX447W7CysrKYOnUqvr6+2NnZYWVlRUxMTKkWHz8/P93XKpUKFxcXkpOTgeJuqMjISHx8fBg/fjxbtmwpdd/buwtLvi9p8Tl16hTt2rXTJT0A3bp1Q6vVcvr0ad2xtm3bVjhpBdBoNGRnZ1e4fF0iLT61XHZ+IUfPF29T0V0GNgsBFK/r8w8/V/44nsT8zTGs+PfD/xB9EKampsyYMcMg960oBwcHbt68Wea52z+kS6ZNr1+/nkaNGumVU6vVQNkr7Fem262q3B43wJQpU9i8eTMffvghzZs3R6PRMGTIEPLz8/XK3fm+qVQq3XN36NCB+Ph4Nm7cyLZt23j22Wfp06dPqTFOdyp5P8p6b+4sU1bs95KSkoKjY/38zJDEp5Y7FJ9CQZFCIzsNHvYWhg5HiBojpJ8Pm6KuEH76GgfibtClmb2hQ6owlUpVqb/eDcHf35/vvvvunuV8fX1Rq9UkJiYSGBhYZpmWLVuWmh125MiRKonzTmZmZhQVFVWo7J49ewgODmbw4MFA8Xpy99M9ZGNjw9ChQxk6dChDhgyhf//+pKSk0LBhQwD+/PNPvfXv/vzzT/z9i7tofX19CQsLIysrS5fc7Nu3DyMjI1q0aHHX+5b3rLm5ucTFxenuUd9IV1ctd+DcDaB4fM/97G0mRF3l4WDJ8482BeCDTTEGaUGoy4KCgjh58mS5rT4lrK2tCQkJYdKkSYSFhREXF0dERASfffYZYWFhAIwePZqYmBimTZtGbGwsK1eu1C2Ncvu/a9HR0URGRpKSkkJaWpreorYV5eHhwcGDB0lISOD69et3XcivefPmrFmzhsjISI4dO8bzzz9f6YX/Fi1axE8//URMTAyxsbH88ssvuLi4YGdnpyvzyy+/sHz5cmJjY3nnnXc4dOiQbgzRCy+8gLm5OSNGjCAqKoqdO3cybtw4hg8ffs9tnTw8PNi9ezeXLl3SbQoOxYmVWq0u1cVWX0jiU8v9GXcr8fGqPX/NCvGwjOvljYWZMccupLIp6sq9LxAV1rZtWwICAli5cuU9y7777rvMnDmTuXPn0qpVK4KCgvj999/x9PQEirccWrVqFWvWrMHPz4/Q0FDdrK6S7jAoHkTs7+/P77//Tnh4OP7+/nqtFgkJCahUKsLDw8uNJSQkBGNjY3x9fXF0dCw1Xud2ixYtokGDBnTt2pWBAwcSFBREhw4d7vm8t7OysmLevHkEBATQsWNHEhIS2LBhA0ZGf3/8/ve//+Wnn37Cz8+PsLAwvv/+e3x9fQGwsLBg8+bNpKSk0LFjR4YMGULv3r1ZsmTJPe89e/ZsEhISaNasmV631o8//sgLL7yAhUX97CVQKfJnkE56ejq2trakpaXVig1L03MLaP/fLWgV2P9GL9zsNIYOSYga56OtsXyy/QxeDpZsmfQ4JjVs5mNubi7x8fF4enqWO1i4ptqwYQMhISFERUXpfZBXhTlz5rB06VIuXLhQ4WvCw8MZPHgw586do0GDBlUaT3VRqVSsXbuWQYMGPZT7Xbt2jZYtW3LkyBFd4lmblPf7UpnP75r1L4ColMPxKWgVcLe3kKRHiHKMeswTe0szzl3P4qfDFf8QFfc2YMAARo8ezaVLlx64rs8//5zDhw9z7tw5vv32WxYsWMCIESMqVcemTZuYMWNGrUl6DCE+Pp7PP/+8ViY9VUUGN9diB6SbS4h7sjY3ZVyv5sz6PZpFW2N5qr0bNuYVn70k7m7ChAlVUs+ZM2d47733SElJoWnTprz++utMnz69UnV88MEHVRJLXdapUyeDLBVQk0jiU4vdPrBZCFG+Fzq78+2f54m7lsWn28/w5pO+hg5J3GHRokUsWrTI0GE8dDLa5OGTrq5aKjU7n+ik4oXZpMVHiLszNTbi7X8UJztf70uotVtZCCEenCQ+tdTB+BQUBZo5WuJkU7sGRAphCD18nOjp40ihVmHO+lOGDkcIYSCS+NRSuvE90s0lRIW99Q9fTIxU7IhJJvx0sqHD0SNdHkLcW1X8nkjiU0v9WTK+x0v25xKiopo5WjGiqwcA7/4RTUFR5Rajqw4l2x3U132ThKiMkt+TymyvcicZ3FwL3cjMI+ZKBgCdvRoaOBohapfxvb1ZG3GJuGtZrNiXwKjHvQwaj7GxMXZ2drpNLS0sLGQVdiHuoCgK2dnZJCcnY2dnh7Gx8X3XJYlPLXQwPgUAH2dr7K3U9ygthLidrcaUaf19mLb6BIu2xfKkn6vB18FycXEB0CU/Qoiy2dnZ6X5f7pckPrWQjO8R4sH865Em/HLkIkfO3+S/v5/ki+EBBo1HpVLh6uqKk5MTBQUFBo1FiJrK1NT0gVp6SkjiUwuVjO/pLNPYhbgvRkYq3hvchn98spfNJ6+y/dRVere6+4aPD4OxsXGV/MMuhCifDG6uZVKy8jmTXLwGSSdPGd8jxP1q6WLDy92Ll+1/Z91JcvKLDByREOJhkMSnljmcUDy+p7mTFQ0tzQwcjRC124Q+3jSy03DxZg6f7jhj6HCEEA+BJD61zJFbiU9HD2ntEeJBWZiZMOup1gB8ufsc0ZfTDRyREKK6SeJTyxxKuAlAJ0/ZfViIqtDX15kn2rhQqFWYsupYjVjbRwhRfSTxqUWy8ws5eSkNkBYfIarSf59ujZ2FKScvp/Pl7nOGDkcIUY0k8alFIhJTKdQquNma07iBhaHDEaLOcLI2552BxZuYLt52htirGQaOSAhRXSTxqUVKBjYHSGuPEFVuUPtG9G7pRH6RlimrjlOklb2zhKiLJPGpRUoSn44yjV2IKqdSqZgzuC3W5iYcu5DK//ZIl5cQdZEkPrVEQZGWv86nAtBJWnyEqBYutua8/WRxl9fCLbEyy0uIOkgSn1ri5OV0cgqKsNWY4u1kZehwhKiz/hXQmD6tnMkv0jLx5whyC2RhQyHqEkl8aonD8SXr9zTAyEh2bhaiuqhUKuY90xYHKzWxVzOZv+m0oUMSQlQhSXxqCRnYLMTDY2+lZsEQPwCW74tnz5lrBo5ICFFVJPGpBRRF4cj54oULZf0eIR6Oni2dGN7ZHYDXVx7jZla+gSMSQlQFSXxqgbhrmaRk5WNuakTbRraGDkeIemPGgFY0c7QkOSOPkF+OoZUp7kLUepL41AKH4otbe9o3scPMRH5kQjwsGjNjPvk/f8xMjNgek8xXMsVdiFpPPkVrgSPnZWNSIQyltZutblXn+ZtP6zYKFkLUTpL41AIRiakAdHCXjUmFMITnOzXlqXZuFGkVxv4QQYqM9xGi1pLEp4ZLycon/noWAP5N7AwbjBD1lEql4v1/tsXLwZIr6blM+jlSxvsIUUtJ4lPDRSQWj+/xcrTEzsLMwNEIUX9ZqU347IUOqE2M2BV7jY+3xRo6JCHEfZDEp4bTdXM1lW4uIQytlasNc//ZFoBPdpxlU1SSgSMSQlSWJD413F+3Wnwk8RGiZvhnh8a81M0TgMkrj3H6SoaBIxJCVIYkPjVYkVbh2IVUADq42xk0FiHE32YMaEnXZvZk5xcx6psjpGbLYGchagtJfGqw01cyyMovwkptgreTtaHDEULcYmJsxJLnO9C4gYbElGzG/hBBQZHW0GEJISpAEp8arKSbq10TW4xlY1IhapSGlmZ8OTwACzNj9p69ztu/RqEoMtNLiJpOEp8aTMb3CFGz+brZ8On/+WOkgp8OX+Dz8DhDhySEuAdJfGowmdElRM3Xu5Uzs55qDcCCzaf5LfKSgSMSQtyNJD411M3bFy5samfYYIQQd/ViFw9Gdi+e6TXll+McipdtLYSoqSqd+OzevZuBAwfi5uaGSqXi119/vec1u3bt4pFHHsHc3BwvLy+WLl1aqszq1avx9fVFrVbj6+vL2rVrS5X5/PPP8fT0xNzcnEceeYQ9e/bonQ8ODkalUum9OnfuXNlHrBEiLsjChULUJjMGtKJ/axfyi7S88u0RYq/KNHchaqJKJz5ZWVm0a9eOJUuWVKh8fHw8AwYM4LHHHiMiIoIZM2Ywfvx4Vq9erStz4MABhg4dyvDhwzl27BjDhw/n2Wef5eDBg7oyP//8MxMnTuTNN98kIiKCxx57jCeeeILExES9+/Xv35+kpCTda8OGDZV9xBrhr/OpgHRzCVFbGBmpWDS0Pf5N7UjNLmDY/w6SeCPb0GEJIe6gUh5gGoJKpWLt2rUMGjSo3DLTpk1j3bp1nDp1SndszJgxHDt2jAMHDgAwdOhQ0tPT2bhxo65M//79adCgAT/++CMAjz76KB06dCA0NFRXplWrVgwaNIi5c+cCxS0+qampFWqFKkt6ejq2trakpaVhY2NzX3VUlee/+pP9cTeYM7gNLzzqbtBYhBAVl5qdz9Av/uT01QyaNrTglzFdcLYxN3RYQtRplfn8rvYxPgcOHKBfv356x4KCgjhy5AgFBQV3LbN//34A8vPzOXr0aKky/fr105UpER4ejpOTEy1atGDUqFEkJyeXG1teXh7p6el6r5pAb+FCafERolaxszDj25c70bShBYkp2QxfdpCbspu7EDVGtSc+V65cwdnZWe+Ys7MzhYWFXL9+/a5lrly5AsD169cpKiq6axmAJ554gu+//54dO3awcOFCDh8+TK9evcjLyysztrlz52Jra6t7NWnS5IGftyrcvnBhC2dZuFCI2sbJxpzvRz6Ks42a2KuZBH99iMy8QkOHJYTgIc3qUqn0F98r6V27/XhZZe48dq8yQ4cO5cknn6RNmzYMHDiQjRs3Ehsby/r168uMa/r06aSlpeleFy5cqPzDVYNjF1MB8GssCxcKUVs1aWjBdy8/SgMLU45dTGPE8kNk5BYYOiwh6r1qT3xcXFz0WmUAkpOTMTExwd7e/q5lSlp4HBwcMDY2vmuZsri6uuLu7s6ZM2fKPK9Wq7GxsdF71QTHdYmPnUHjEEI8GG9na7556VFszE04ev4mLy4/RLokP0IYVLUnPl26dGHr1q16x7Zs2UJAQACmpqZ3LdO1a1cAzMzMeOSRR0qV2bp1q65MWW7cuMGFCxdwdXWtikd5aI5dSAOgXWNbA0cihHhQbRvb8sOozthqTIlITGX4skOk5UjyI4ShVDrxyczMJDIyksjISKB4unpkZKRuWvn06dN58cUXdeXHjBnD+fPnmTx5MqdOnWL58uUsW7aMkJAQXZkJEyawZcsW5s2bR0xMDPPmzWPbtm1MnDhRV2by5Mn873//Y/ny5Zw6dYpJkyaRmJjImDFjdHGFhIRw4MABEhISCA8PZ+DAgTg4ODB48OD7eW8MIie/iNO31v9o18TOsMEIIapEm0a2/DDqVrfXhVSG/e+g7OguhKEolbRz504FKPUaMWKEoiiKMmLECCUwMFDvmvDwcMXf318xMzNTPDw8lNDQ0FL1/vLLL4qPj49iamqqtGzZUlm9enWpMp999pni7u6umJmZKR06dFB27dqlO5edna3069dPcXR0VExNTZWmTZsqI0aMUBITEyv8bGlpaQqgpKWlVfiaqnYk4YbiPu0P5ZF3typardZgcQghql705TTFf/YWxX3aH0r/j3crV9NzDB2SEHVCZT6/H2gdn7qmJqzjs3xvPLP/iKZ3SyeWBXc0SAxCiOpz+koGL/zvINcz82ja0IJvX+6Eu72locMSolarUev4iMqRgc1C1G0+LtasfrWLbp2fZ0IPEHUpzdBhCVFvSOJTwxy/eGtgcxMZ2CxEXeVub8mqV7vg62rD9cw8nvvyTw7E3TB0WELUC5L41CBpOQWcu7Uju7T4CFG3OVmb89PoznT2akhmXiEjlh9ibcRFQ4clRJ0niU8NUtLc3aShhoaWsiO7EHWdjbkpK/7diSfaFO/qPunnYyzcchqtVoZeClFdJPGpQSJv7c8lrT1C1B/mpsZ89nwHXu3RDIBPd5xl3I8R5OQXGTgyIeomSXxqkJKBze0l8RGiXjEyUjGtf0sWDPHD1FjF+hNJPPflAa6m5xo6NCHqHEl8apCSgc1+smKzEPXSvwKa6O3v9eQne/nznAx6FqIqSeJTQyRn5JKUlouRqniVVyFE/fSolz2/vtaNli7WXM/M44X/HeSr3eeQJdeEqBqS+NQQx2/tz9XcyQpLtYmBoxFCGJK7vSVr/9ONwf6NKNIqzNlwitd++IvMvEJDhyZErSeJTw1RMr6nnYzvEUIAGjNjPnq2HbOfbo2psYoNJ67w1Kd7ZbFDIR6QJD41RGTJ+B7ZmFQIcYtKpeLFLh789EoXXG3NOXc9i8Gf7+Or3edkyrsQ90kSnxpAURRO6Fp8ZHyPEELfI+4N2DjhMYJaO1NQVNz1NeLrQyRnyKwvISpLEp8a4FJqDjezCzA1VuHjYm3ocIQQNZCdhRlLhz3C+4PbYm5qxJ4z1+n/8R7WH08ydGhC1CqS+NQAUZfSAWjhbI3axNjA0QghaiqVSsXzjzblj3HdaeVqQ0pWPq/98BevfneUaxl5hg5PiFpBEp8a4OTl4vE9bdykm0sIcW/Nnaz57bVujO/tjYmRio1RV+i3aBfrjl2Wae9C3IMkPjXAycvFLT5tGtkYOBIhRG1hZmLE5L4t+G1sN1q52nAzu4DxP0bwyrdHuZyaY+jwhKixJPGpAUqmp/pKi48QopJau9mybmw3JvVpgamxiq3RV+m9cBeh4XHkF2oNHZ4QNY4kPgaWnJ5LckYeRipo5SoDm4UQlWdqbMSEPt78Me4xOnk0JKegiHmbYhjwyR72x103dHhC1CiS+BhYSTdXM0crLMxkxWYhxP3zcbHm59GdWfivdjhYmXE2OZPnvzrIuB8juHgz29DhCVEjSOJjYCXdXLI/lxCiKqhUKp55pDHbX+/Bi13cMVLB78cu02vhLuZuPEVaToGhQxTCoCTxMbCSFp/WbjKwWQhRdWw1psx+ug3rxnanazN78gu1fLHrHD0W7OTrffEy/kfUW5L4GFjUransrWVgsxCiGrRpZMv3Ix/l6+COeDtZcTO7gP/+Hk2fj3ax6uhFCoskARL1iyQ+BpSanc/Fm8XTTn2lxUcIUU1UKhU9WzqxccJjvD+4LQ5WahJTsgn55Rh9F+3m14hLFMneX6KekMTHgEq6udztLbDVmBo4GiFEXWdibMTzjzZl99QevPFESxpYmBJ/PYuJP0fSb9Eufo24JC1Aos6TxMeAdAObpZtLCPEQWZiZMCawGXum9WJKkA+2GlPirhUnQIELwlmxL57s/EJDhylEtZDEx4CibrX4SDeXEMIQrNQmvNazOXun9eT1vi2wtzTjUmoOs36PpusHO/hoayw3MmUPMFG3SOJjQLo9umQquxDCgKzNTRnX25t9b/TivUFtcLe3IDW7gE+2n6HrBzuYuuqYroVaiNpOVswzkMy8QuKvZwEylV0IUTOYmxozrLM7/9epKZtPXuGLXXEcu5jGyiMXWXnkIv5N7Rje2Z0BbV0xNzU2dLhC3BdJfAzkVFI6igKutuY4WKkNHY4QQugYG6kY0NaVJ9q4cPT8Tb798zwbTiQRkZhKRGIq760/xb8CGvOvRxrT3Em22hG1iyQ+BlLSbCzr9wghaiqVSkWAR0MCPBry1pO+/Hw4ke8PJpKUlssXu87xxa5ztG9ix5BHGjPQzw1bC5mdKmo+SXwMJOqSrNgshKg9HK3VjO3lzZjAZmyPSeaXIxfYefoakRdSibyQyuw/ounr68yQDo3p7u2AqbEMIRU1kyQ+BhKdJImPEKL2MTE2Iqi1C0GtXbiWkcdvkZdYdfQiMVcyWH88ifXHk7CzMCXI14UBfq50bWYvSZCoUVSKoshynbekp6dja2tLWloaNjbVl5AUFGnxnbmJgiKFPVN70qShRbXdSwghqpuiKJy8nM6qoxf54/hlrmfm687ZWZjSv7ULA9q60tnLHjMTSYJE1avM57e0+BhA3LVMCooUrNUmNG6gMXQ4QgjxQFQqFW0a2dKmkS1v/8OXg/E3WH88iU1RV7iRlc9Phy/w0+ELWKlNeLyFA71bOtPDxxF7mdghDEASHwOIScoAoKWrNSqVysDRCCFqK0VRULQKisLf/y3rmFZBURS0WgUU9P6rKGUfU7Sl66qoJhgxpmUjRrdqRFxmLlvPX2fLqatcz8xnw4krbDhxBZUK/JvY0buVMz19nGjpYo2Rkfx7KKqfJD4GcOrW+J5WrjK+R1QdbV4eRampxa+bt/6bloY2M4OijAy0mVloMzPRZmVSlJmJNiMTbWYmRVmZGNvYYvloJyw6PYrFo50wadDA0I9jMIqioC1UKCwoorBAS1Gh9tb3xV/rXrd/X6CUcazk6+Jz2iItWq2CtujOlxbl1vGiIuXW19pSZfSuvfV1ZZIRQ2pspGJ8A0tUtrakoCUuK5ez2blcPZdOaEIqCzadxsHajC7NHOje3J6uzRxkCICoNpL4GEDJwOaWLpL4iPJp8/Ioun6dwpLXtZKvr1GUmvZ3knPrpeTm3ve9iq5dJz8ujps//AiAumVLLB99FIvOj2IREICxdc1bq0XRKhTkF5GfU0R+biH5uYUU3P51npbC/CIK84soyL/t6zxtcVJT8nWpMtpak1BUlEoFKiMVKpUKlRG3/qu67Xg5x3TX/F2mMgoLishIyUVbqJBxIxduFH/o+AA+mOnKFaGQnqGQkXSdPfuvsckITK1MaOxmTSsPO9q1sMe9sQ1m5sbSSi4emCQ+BhBzpbirq5VrzfswEdVPURSKbtygIOkKBUmXKUxKoiDpCoXJV29Lbq6jzciofOUmJhjb2mJsZ1f8srXF2NoaIysrjKytMLayKv7a0gojK0vd9wWXLpH150GyDx4k78wZ8mJiyIuJISUsDIyMMG/TBstHO6Fp3x6Nnx8mjo5V8j4U5BaRm1VAXnYhuVkFel/n3fq6OJEpIj+n+L8FuYXFX+cVQXXnJyowNjG69VJhbGp02/dGmJgaYXTbeZNb541u/dfExOjWNSqMjI1QGakwMlZhbKy69bURRsaqv1+3HzMqOa5fpqQOI6O/y5UkM6go/v6OBMeQFK1Cdno+6ddzSL+RS8aNHNKv5+q+zkjJw1gLDbQqGgAU3bowD7iRQfKJDLZyAQCtERibG2Npo8bOTo3G2gxzK1M0VqaYW5qW+t5MY4KJmZEkS0KPJD4P2fXMPK5l5KFSgY+LJD51kaIoFKWkkJ+YSEFiIvnnEym4fJmCpCQKriRRmHQFJT//3hUBKjMzTBwcMHZ0wMTBERMHB0zs7TFu0ODv5MbODuMGxUmOkZXVff0jb96qFdZ9+gBQeP062YcOkfXnQbIO/knB+URyjx8n9/hxXXnTRo3QtPND064dmnbtUPv6gokpuZkF5GTkk52ef9t/C8jOyCc3I5/crELysm8lOFmFxeNKHpDKSIWZuTFm5iaYaYr/a2pujKnaGFMzY0zMjDExM8JE970RJma3fX1HOVMzY0zUxsVJjbFKPjQfkMpIhaWdGks7Na7NS5/XFmnJTM0j40Yu2Wn5ZKXlcfNGDhcvZ3Ljeg55GfmYFCiYKyqMtKBkF5GZnU3mlewK399MY4xaY4KZxuTW/ycmuu9NzYt//qbqO/7fUOv/f1J8vvh7IxP5/6I2k8TnISsZ3+Nhb4mFmbz9tVlRWhp5cXHkx8eTfz6R/MRE8hPPU3A+EW1W1t0vVqkwcXTExNUFU1c3TF1cMHFxLj7m4IiJowMmDg4YWT/8AfAmDg7YDBiAzYABAORfvszNfYdIOXqK9LNJZKTkkGdqS25cA/IuZpK/9QT5ZucpMLUq7lOpJGMTI9SWJphbFv+VrrYo/lptafr3h9WthMbM3Fj34WV662sTU/mLvjYzMjbCxl6DjX35M1yz8gr561wKR2OvE3M+lcTLmZCvRaMFjaLCQlGhUVTYqIywNTLCXFGhytfCrUHZeVmF5GUVVlnMKqO/W/dKWgKNjG/73qSkJVClax00KjluVNJKp0JV0rJ329cqo79b+1S3lTUy1v9apbrt2O313HZtqS5MlX7roEp1Z5fmbcdKypRxrd75Wvi7J5+8D1nJjC7p5qo9Cm/eJD8ujryzZ8k7G0de3Fnyzp6l6Nr18i9SqTBxdcGsqTtmTZpg2rgxpq4umLq6YuLqiqmTEyozs/Kvf8gKC4qKux+u5ZB2LYe05GzSrhd3SWSm5lGYZwM8Cg4Uv8qjaDEtyMKsIAPT/AzMTbVY2KqxdLLF0s0eK3cXLJs4Y26txtzSBLWlqSQu4p4s1SY81sqJx1o5AVCkVYi5ks5fialEXUzj+KU0Yq9mUHR7C6I5mAKO5qa0aGCJl50FTazNcbUww0FtinEhuvFghXl/j/EqyCse51Vwa+zX7ee0RcX1K1qFgrzisvWeSj8Z0kuOjFSlz6vA2MyY4e92MVjIkvg8ZLoZXTKwucZRFOX/27vz+Kiqu/Hjnzv7ZN83SEIIq4DsuwqoRVEsqD9FuyjW2uLSgrRK3R7c0bZatY/Qiooi/op9HvdftRCrLAoiIMgedrKQkIXsy2z3/P6YJRkS9iTA5Pt+ve5r7px75s45k5D5clZchYdp3LmDxh07cOzYSePOnbhLSo77GlNaKtas7lgyM7FkZmBOz/A+du2KwXp+rVHibHRTVdrQIripKmmgttJx0vEytnAzEXFWImKshMfaiIj1nodFWzDXV2Ao3I86sBPXzp007tuF+8iRFvfQgVqrFWdWFo7u3bH0yMbaPRtrj2wsGRnnVTAozl9Gg0a/tOigvQ4bXR52FlWztbCKrQVVbC2sYk9JLYcdLg4XV7KiuDLoHqnRNnolR9IrOYKszAiyEsLpnhhOUqT1uIG4x6Pjduq+YMiD7pux55+1F5jd52maDdg0E9B7rnTvrDzlm5137PPWrvln8B177p8NeLzzwPIGCmi+REGzdP9SBzS7dlr89/I/OZWfn/ncLmIpgU8HC8zokqns55yrpISGTZtp+OEHGnfsoHHnTvSqqlbzmtPSsPTsgTW7B9YePbxf1N2zMUaEd3CpT0wpRV2lg4rieiqK66ksrqPiiPe8rtJxwteabUaiE+2+I4zoJDtR8TYifEGOyWI8wavjYVgPYGIgxX30KI07d+LYtYvGHTu93YL796McjsDg6SBGo/dzTk/HnJHubS3LSMeckYElPR2DXRb7FMdnMxsZnBHL4IympRgaXR72ldaSW1xD7pEacotr2F1cw+GqRop8x8rdpUH3CbMY6RYfTlZiOFnx4WQlhNMtIZz0ODuJEVasvvFBoax5cIQOum89J9QxgZMvWPKn683zHBNkNV8r6lyTLSuaae8tK5xunX5zvVtVfD1nAl1jZZ2KjqJcLhpzd9OwaRMNmzfTsGkTrsOHW2Y0m7H27IGtb19sfS/CdtFFWHv1Ou8CHLfLQ1VJgy/AqfMGOUfqqThSj/sEze+2CLM3sEmyE51gJzopLBDs2CLM7d7lpDweXIWFOPbuw7l/n7frcP9+nHv3otefeLCqKTERc0YG5i5p3nFR/q7DlFTMaann5ZR7cX6qbnSxu7iGXcU17Cut5UBZHQfK6iioaAjuLjuG1WSgS4ydLrF2usaG0TXW3uwIIzHCKoswniOn8/0tgU8z7R347CyqZtLLq4m0mdgyd6KMa2hHyu2mcdu2wMykhk2bW65zYzBg7dUL+6CB2AcMwNa3L9YePc6r7hbdo1NV2kB5YR1HD9dy9HAd5YfrqCqpP26TtMGgEZVoJzYljNiUMGKSw32PYdjCzR1bgVOklMJdUuKdBZeXhzMvH1e+99GZl4deXX3SexgiIjCnpnjHUKWkYkpK8s6CS0zwDRpPwJiQgOE8+vmK84vTrZNfUc9BXyC0v6yOg76juLqRk01CNBs1kiJtJEdZSY6ykRxlIynKSorv3J8eYTXJ3/82Jnt1naeaj++RX/q2pXQdx65dTYHO+g0tWhAM0dHYB15M2ODB2AcNwjbg4vOmJUcpRW2FwxvYFPoDnFoqiurxuPVWX2OxmwLBTWxKODHJ3vOoRDvGC2w3bE3TMCcnY05OJmz48BbXPZWVOPO9QZC7qAjX4SJcxcW4iopwFxXhqaxEr63FsWcvjj17T/hehuho36w53/IAiYkY47zLA5hiY5uWCoiNxRgdjWY8URefCCUWk4HsxAiyEyNaXHN5dIqrGsmvqKegooHCigYKKhoo8D0vrm7E5VEUVjZQWNlwwvcJsxhJiLASH2EhPtxKfLiF+AgLceEWEiKsxPmeJ0RYiQ2zyMaubUwCnw4kCxe2LU9NDXXfrKF25UpqV6/GUxY8y8oYHU2Yb/Xh8BEjsHTvjmY4939AdF1RWVxPaX4NZfk1vsdaHPWtT7c1mQ3EpYUT1yWC+LRw4tLCie8SQViUpdME0MaYGOwxMdgHDGj1ul5fHxQIuYqKfatdlzatdl1ahnK50KuqcFZV4dy77+RvrGkYoqIw+QOhZgGRISoSY0Sk9zEyEkOk/zEKY6R3YUgJmkKH2WggPS7suFtpuD06R2ocHKlupKS6kSPVDoqrG33Pm85rGt3UOz3kHa0n7+iprUUUaTMRE2Ym2m4mxm4h2m4myu593vzw5/Ffj7SapOutFacd+KxatYo//elPbNy4kaKiIj788EOmTp16wtesXLmS2bNns337dtLS0njwwQeZMWNGUJ7333+fxx57jH379pGdnc0zzzzD9ddfH5Rn/vz5/OlPf6KoqIh+/frx0ksvcemllwauK6V44okneO2116ioqGDkyJG8+uqr9OvX73Sr2S5kj66z5zx4kJr/fEntypXUf/89uJuCBUNYGGHDhxM2ahTho0Zi7d37nAc6HpdO+eFayvJrKc3zBjnlhbW4nS1bcTSDRkxyGPFdwn0BTgTxXcKJiref89V3z3eGsDCs3btj7d79uHmUUuhVVc22ACn1rpRdWoqnosK3x1kF7soKPJVV3oHuvtc4q6rg0KHTL1d4OIaoKO8K2f7H8DA0ux1DWDiGsDDvYbdjCA8LPA+6Hu67HhaGZjrmT7Z35CiBEaP+80A/6DHnAVqzNZf8562kdZLAui2YjL7xPzEnHoRf73RzpNpBea2DslonR+uclNc6KK9zeo9aB0frnJTVOqmod+LRFTWNbmoa3eRz4pakY2kahFtMhFuNhFtNRFpNhPuOCN/hPTe2SAu3GrGZjdjNRuwW76PNbMRquvCXnzjtwKeuro6BAwdyxx13cOONN540/4EDB7jmmmu46667WLJkCd988w333HMPiYmJgdevXbuWadOm8dRTT3H99dfz4YcfcvPNN/P1118zcuRIAN577z1mzZrF/PnzGTt2LH//+9+ZNGkSO3bsICMjA4A//vGPvPjii7z11lv06tWLp59+mh/96Efk5uYSeR4MfNwZ2JVdAp/T4di3j+ply6hZthxHbm7QNUtWFhHjxhExfhxhQ4ac0/E5uq6oKK7jyIFqSg5Wc+RgNUcL61pdndhkMZDQNZLE9AgSMiJJTI8kLjW8/aZ5euetgu4B3d10KD34ue5pmUf3gDo2rZXXNcuje1x4dBe6x41H9557PC48yuNLd+HR3S0P5UFXCjc6utK9+ZX33J+me6eLoLyr0/mm0vrSfOnKlwd8aUo/Jn/TNWIVKqZ5Ht81jxFDo8LYoDA0KIwNYGxUmBrA6ACDA4xOMDi9z43NHg1u7xeDXleHXldHWy2dpxsUygTKqNB9j8roezR5zzEqNN9hMCoMRjAaFEajjtGoMBkVJoOO2agwaQqzpjAZlHf9FYMC36PmTzP6r4Fm9C1oZ9DAaAVbtO+IanYeDdZjnjc/zGFgtnsfTdZOF1yFWUxkJZjISjh5N7uuK6oaXJTXOalqcFLV4PIe9S6qGtxUNbiobHBS7U9vdjS6dJSCWoebWocb7x4gZ0/T8AZDvkDIZjYEBUatBUpWkwHrMec3D0tvk/KcUR3OZnCzpmknbfGZM2cOn3zyCTt37gykzZgxgx9++IG1a9cCMG3aNKqrq/n8888Dea6++mpiY2P5xz+8myaOHDmSIUOGsGDBgkCevn37MnXqVObNm4dSirS0NGbNmsWcOXMAcDgcJCcn8/zzz/PrX//6pPVpz8HNpTUOhj/zBQYNtj9xNfYTTg0Wjj17qP7831QvXxbcJWEyET5iBBETJhAx7jIsvqA3QCnfl7Du/SL2f9krT8trQflUK1/w3nPlcaH7v6w9bjy6E4/HSW2Nh9JiI2VHTJSXWKgot+F2tfy5msxOIqKrCI+uJCzqKPbIcixhVXiUC11341FuPLoHXXlw62505cGje3xf+t4vfu/1pkDAfzQFBMqbhj9NedPwHrrScWsaOuDRNDzNHoPTwIOGRwMdDbfmu95aWuD1LdNUJ/syO5bRowhzQHgjhDkgzKEC51YX2JxgcylszmbPW0vzPZpaH+Z1zuiawmP07p3lf9SNoAwK3QAYQBkAzZuGFnzedA0waGAwoIwGMBjAaACT0XfuvebPg1FD8+czGLznRgOaZvB2KxoM3lZegxHNYEAzGL1BmsHk2yvNCEYTBn8ezfd+/vv5XofB16phMIDR6H3dsdcNBjCa0Pz3bX4/zfsaTfPm07Sm+6M13UfD4FvkT0PzbrTmW+TP6GuE87/e+wF676f5WrI13301DJrvMwDvBws4de+K1w0unQanh/rAo4cGh06920O9w0ODy0O9U6fe6fEdOnVODw6XhwaXotHtweFSuHQdhQZKC2o7VL73Uxh8j37+vwHB6QoNs9HA5qdvbtPfyfNqcPPatWuZOHFiUNpVV13FG2+8gcvlwmw2s3btWu6///4WeV566SUAnE4nGzdu5A9/+ENQnokTJ7JmzRrA27JUXFwc9F5Wq5Vx48axZs2aVgMfh8OBw9EUBVefwsyRM1F2+DD/fHUJDxo0zJqJD57LD/zPMvB/T+Vf/qlpISgFvjze5/6HYxeKai1yPd7VoHRfK4Bq9Q6n48xfr5od/gTNdwAw4BIYcAnK++8N5f+3lFsAuf+3nUp1PBqa8v9paeWLvdm/tcBPVlM4gaPA0SqgSuPkyx+fPt93DefnnK2zp53gWQe/+Zkzcdy/uI2+47ia/TK3KE6rv+jqpHlO5T4XVPiq8G5w2iGLKXfom7Ubs+/o6P4Q7Rx/bO0e+BQXF5OcnByUlpycjNvtpqysjNTU1OPmKS4uBqCsrAyPx3PCPP7H1vIcOk7f/Lx583jiiSfOvHKnSHd7KDU3G8Smt75IXquO/ctzQf0lEkIIIYIZ1bn9IuuQWV3HDoTyt240T28tz7FpbZXH76GHHmL27NmB59XV1aSnt32/oy08goyqJHQ81NsOExeVhkHzbQqnGUADg+ZtDjRoTc2emsH36L3gPQ80eRIYkNgyNvKleBzQUAENlWiNlc0GOfryWcO9fe4mm7fz/tjXe58ce9L0vMXH2pSggEbdRa2nkTpPI7XuRhpV047kZhfE1kJMHZiaRf+63Ywn2o4nKgz8M2I0f6l8n0bzMmn+0voHY/rL32yQJgQ+N9+H6cvarPVGgbtR4W5UuBo9eBx6i/8BawYNs82EJczo3SzTakIzaq38BIQQoiXV1GTvezxOu3SrI1BU0ENQM3kr1/09Bse+PPg9j7mu/KU8pqfg2Ne2KF6zvtiga62X7VyP62r3wCclJSXQGuNXUlKCyWQiPj7+hHn8rTcJCQkYjcYT5klJSQG8LT+pqamt5jmW1WrF2gH7KUXERtPQ0AeAA5lL+e2sb9rvzcr2wLYPYOenULq1Kd0GRGdAzyuh+3jodimExbXZ2+pKZ0/FHtYVrWN98Xo2lmykxlkTlMegK64qTOCqTYq07U37X5mSk4meOpXoKT8+4ayctuRx6RQfqKJgVwWFuRUcOVDdYhByeLSF1J4xpPWIIbVHNHFpETI1VAghLnDtHviMHj2aTz/9NCht+fLlDBs2DLPZHMiTk5MTNM5n+fLljBkzBgCLxcLQoUPJyckJmuKek5PDlClTAMjKyiIlJYWcnBwGDx4MeMcGrVy5kueff75d63gyBoPBO4hWM+DxtMNC2RWHYPsHsO19KG4W7KBB+gjodbX3SOrbZpG2UooD1Qf4rug7viv+jvXF66l0VAblsZvs9Ivvx9DwPoxYX0P0J1+jFzdtXBl+ySXE3noLEePGtZym28aUrijNryF/51EKcyso2luF2xU8YjQy3kbXPrF06RlDao8YIuNtF/y0TSGEEMFO+9umtraWvXubVkY9cOAAmzdvJi4ujoyMDB566CEKCwtZvHgx4J3B9d///d/Mnj2bu+66i7Vr1/LGG28EZmsBzJw5k8suu4znn3+eKVOm8PHHH/PFF1/w9ddfB/LMnj2bn//85wwbNozRo0fz2muvkZeXF1gPSNM0Zs2axbPPPkvPnj3p2bMnzz77LGFhYfzkJz854w+orWhKoTTQ2yrwaaz2Bjqb34WC9U3pBhN0nwD9rvcGO+HxbfN+QIO7gfXF61lVsIrVBas5XBe815XdZGdI8hBGpoxkeMpwujuiqVnyDyr/+U/vtF7AGBtLzP+5kZibb8bSDt2KzTXWucjfcZRD28vJ215OQ40ruLxRFrr2jvUefWKJSpBNMIUQItSdduCzYcMGJkyYEHjuHyNz++2389Zbb1FUVEReXl7gelZWFp999hn3338/r776KmlpabzyyitBawCNGTOGpUuX8uijj/LYY4+RnZ3Ne++9F1jDB7xT3svLy3nyyScpKiqif//+fPbZZ2RmZgbyPPjggzQ0NHDPPfcEFjBcvnz5ebGGj4aOwoh+NtNSlYL87+D7xd4WHpdvwLRmgG6XQP8boe+P27QLq7C2kJX5K1lduJr1xetxeJpmwVkMFgYnD2ZEyghGpIygX0I/zAYzjbm7KX/+dQ59/nlggUFLdjbxd0wn6rrrMLRT96K/VSdvezmHth3lyIGqoC5us9VIF1+Q07VPLHGp4dKiI4QQnYxsUtpMe67js+Cuz9GNVrZmPsLfHlwFxtOYeOyshy1LYd3foXRXU3pCLxhyGwy4CSJT2qysB6sO8kXeFyw/uJydR3cGXUsNT+WyrpdxWdfLGJ4yHLupqZWkMTeXslfnU7N8eSAtbORI4n9xB+GXXtouqyi7XR4KdlVwYHMpB7aW01DtDLoelxZORr94MvvFkdojBqPseSOEECHnvFrHR3j5l3zyYARHzam1ylQXwfqFsOFN7+ws8K522u8Gb8CTPqLNxuzsq9zH8kPLyTmUw56KPYF0o2ZkcNJgLut6GZd2uZTsmOwWrSSNu3Z5A56cHF9lNSKvuor4u36JvR22C3E0uDm0rYwDm8s4tK0cl6NpWpjZaqRrn1hvsNM/nsg4W5u/vxBCiAuXBD4dRPM1rOm6ERzVJw58SnNh9YveMTy6b1xKTCaMuhsG/dS7PHwbKGso4/MDn/Ppvk+DWnZMmomRqSP5UeaPmJAxgThb62V15uVR+tJLVH/mW3Fb04i8+ioS7r4bW69ebVJGv/pqJ/s3l3JgcykFuRVBY6XCoy1kDUqk+8BE0npJq44QQojjk8Cnw3gH9+hK87b4tKZkF6z6o3c6un/Bg4zRMPpe6H0NGM5+mwuHx8GK/BV8su8Tvin8Bo/ytpaYDCbGpI3xBjvpE4i2Rh/3Hu6KCsoWLKDiH0vB5QJNI2rS1STcfTfWnj3PuoyBsta72L+5lD0bSijYVYFqNt08NiWMrIGJdB+USFJmpGziKYQQ4pRI4NNB/C0+ShlaBj6lu+GrZ2DHxwQCnj6T4dLZ0GVom7z/3oq9/HP3P/l/+/9f0Po6AxIGcF32dUzqNokYW8wJ76E3NnJ08TuUv/Yaem0t4J2SnvT732Hr06dNyulyeDi4pYw9G45waHs5ursp2EnMiCR7iDfYiU05+QZ/QgghxLEk8Okg/jE+ShmhxrcQY20JrJgHG9/2bo4J0Pc6GDcHUgac9Xu6PC6+yPuC93LfY+ORjYH0lPAUrut+HZOzJ9M9+tQWDKz58iuOPPssroICAKx9+5L0+98RMXbsWZdT1xWFuyrYubaIAz+U4nY2TX2LTQ2n1/AkegxLJiYp7KzfSwghROcmgU8H0XxdXUoZYM9yKN8L37wMTm/LCb2vgQmPQEr/s36v0vpS/rHrH7y/532ONh4FvIOUx6eP5+ZeNzMqbVRgi4yTcebnc+SZZ6ldsQLwrrKc9LvZRE2efNaztCpL6tm1tojcb4uprWiaJh+VYKPn8GR6DksmvkvEWb2HEEII0ZwEPh1NGdB/+AeBkCFtCEx8GrqdfcvJvsp9vLX9Lf61/1+4fIOik+xJ3NjrRm7seSPJ4a1v3dEa3eGg/LWFlC9ciHI6wWwmfvrtJMyYgSH8zLuZnI1u9m4sYdfaIor2Nm3Wag0z0XN4Mn1GpZLULVLW1xFCCNEuJPDpIP6uLk0ZcGtgSejl7dLqdwOcRcuJUooNRzawaNsiVheuDqQPThrMzy/6OePTx2M2nMaaQUD9999T9MijOA8cACB8zGiSH330rPbRKs2rYduqQnavP4LbN/1c0yD9ojj6jE4la2ACJvPZD94WQgghTkQCnw7iD3wMyoDznjVYEvuedcCz5vAa5v8wny2lW3zvoXFl5pXcdtFtDEoadNr31OvrKfnLS1QsWQJKYUpMJPmRh4m86qozaoFxuzzs21jC1pWFHDlQHUiPSQ6jz+gUeo9MJSK2/TeJFUIIIfwk8Okg/sDHqDRc0WlnHPS0FvBYjVam9pjKbRfdRkZUxhndt27tWooe+6/A4OXoG28g+cEHMUYff1r78VSV1rN91WF2rimisc7b5WYwamQPTqT/uC6k9oiRriwhhBDnhAQ+HSTQ4qNrOD3Ok+Ru3bdF3/LXTX8NBDw2o42be9/MHf3vIMGecEb31BsbKfnzC95WHsCUlkrqk08RccnpjTlSSlG0t4rNX+RxYEtZYFZ+RJyVfpd24aKxaYRFWc6ojEIIIURbkcCngzTv6vIPPD5VuUdz+cv3f+Gbwm+Atgl4ABpzd3P497/Hsce7RUXMrbeQ9LvfY4w49cHLukdn36ZSNufkUXKoaX2gjIvi6D++K5n94zHI4oJCCCHOExL4dJDmLT6nGvgU1xXz6uZX+XjvxygUJs3ETb1v4lcX/+qsAh6lFBXvvEPJn19AOZ0YExJIm/csEZdeesr3cDa62fH1YbZ8WUDN0UYAjCYDvUelMPCKdOJSZYFBIYQQ5x8JfDpI0ODmk3R1OT1O3tz2Jm9sfYNGjzeomJg5kZlDZp7xGB4/T2Ulh+f8gdqVKwGIGD+e1GeexhQff0qvdzS42fpVAT/8Jz8wfscWYWbAuC70H9dVurOEEEKc1yTw6SD+zh6DMuDW3cfNt754PU+ufZKD1QcBGJI0hN8N+x0XJ1581mVo2LadwpkzcRUWolmtJM15kNhbbz2lgcaNdS5++DKfrV8V4Kj3lj860c7giRn0HpmCySJT0YUQQpz/JPDpIJrmb/HRcOotW3wqGyt5YeMLfLT3IwDibfHMGTGHq7tdfdYzoJRSVP7zfzjy9NMolwtzejpdX3kZW9++J31tQ62TzTn5bF1ZgKvRu/5ObEoYQyd1o+ewJAxG2QldCCHEhUMCnw7SvMXH5Wka46OU4tP9n/Ln9X+mwlEBwM29bmbm0JlEWaLO+n11h4Pix5+g6sMPAYi4/HLSnpuHMerE93Y2uvnhP/lsyskLBDzxXSIYdk03sgcnym7oQgghLkgS+HSQphafplldB6sO8vS3T7OueB0APWJ6MHf03DNafLA17rIyCu77DQ2bN4PBQOL9s4i/884T7rHlcels/7qQDZ8dpKHGW86E9AiGX5tF1sUJEvAIIYS4oEng08E0XWNv5V62lm1l4ZaFOHUnNqONGQNncFu/2057e4njady1i/x77sF9uAhDVBRdX/oL4WPGHDe/0hW71x9h3Sf7qSn3DqiOSrQz6sfd6TE0SQIeIYQQIUECnw4SmNWFgT9v+HMgfWzaWB4Z9Qjpkelt9l41X35J4e8fQNXXY+nWja4L5mPNyjpu/qJ9VXz9z92BdXjCoi0MvzaLvmNTMcoYHiGEECFEAp8O4h+fbFDek3hbPH8Y8Qeu6nZm+2Adz9HFizky7zlQirDRo+j60kvH3Xai5mgjaz/cx571RwAw24wMvTqTiy9PxyyztIQQQoQgCXw6iH+Mz4ikEfQb/iN+3OPHbTJ42U8pRemLL1K+8HUAYm6ZRsojj6CZW3aduZweNi07xKblebhdOmjQd0wqo6Zkyzo8QgghQpoEPh3E32GUEZHB0Iuua9N7K5eLokcfo+rjjwFIvP9+4n91V6stSQe3lLFq6e7AastpPWO45KaeJGZEtmmZhBBCiPORBD4dxB+D6B69Te+r19dTMGsWdatWg9FI6lNPEXPD9S3y1VY4+Pqfu9m3qRTwbh469saeZA9JlJ3ShRBCdBoS+HQUDVDeLqm24qmpIf+uX9GweTOazUaXl/5C5PjxQXl0XbF1RQHrPtmPq9GDZtAYdEU6wydnYbbKOB4hhBCdiwQ+HcTfpqI8bRP4eKqqyPvlXTRu3YohOpqMv/8N+6BBQXnKCmr5cvFOSvO8s7WSs6IY/9M+JHSNaJMyCCGEEBcaCXw6iGZQ4PGul3O23BUV5N15J44dOzHGxpLx5htB20/oHp3vl+Wx/l8H0D0Ki93E6Ouz6XdJmqzHI4QQolOTwKeDGHxtPvpZdnW5y8vJu+MXOHbvxhgfT8aiN7H16hW4Xn64lv+81dTKkzUwgXE/6U14tPWs3lcIIYQIBRL4dBR/i89ZdHW5jx7l0O2349y7D1NiIhlvv4W1e3fA28qz+Yt81n26H92tsIaZuHRaL3qNSJbBy0IIIYSPBD4dxN/ic6ZdXZ7qavLu/KU36ElJIfOtRVi6dQOguqyBnDd3ULy/CoDM/vFM+FkfwmOklUcIIYRoTgKfjuJrdDmTwEevqyP/V7/GsXMnxoQEMha9GQh69mw4wop3c3E2uLHYjFxyc0/6jE6VVh4hhBCiFRL4dBD/huinO51ddzjIv/c+GjZv9s7eeuMNrFlZuBweVr+3m51rigDvjK2Jd/YjKsHe1kUXQgghQoYEPh0ksIDhaaxfqFwuCmfOov7bbzGEhZGx8DVsvXtRVlDDsoXbqTxSDxoMvTqT4ZOzZENRIYQQ4iQk8Okg2ml2dSmlKHr0MWpXrECzWun6twXYL76YnWuKWPmPXDwunfBoC1f+oh9de8e2Y8mFEEKI0CGBTwfxr59zql1dZX/9q3fvLaORLi+/hG3wMFa8u4vtqw8DkNEvnivv6Is9QjYVFUIIIU6VBD4dpKnF5+R5K/7nfyibvwCAlMfnwsWj+ODPGyk5VAMajJicxbBJ3WQxQiGEEOI0SeDTQfyzrE62gGHtqlUUP/4EAPF3z6B2wBUsf3Y9jbUurGEmfnRnPzL7xbd7eYUQQohQJIFPB9H8s7pO0OLTsH07BbPuB4+H6ClTODLwRla/8gNKVyRmRHL1r/rLrC0hhBDiLEjg00EM2onH+LhLSym4515UfT220aPZO/B2ti7dDUDvkSmM/1lvTGbZTV0IIYQ4GxL4dJATtfjoTicFv/kt7iNH0LL7smXAPRSs8q7PM2pqd4ZclSkLEgohhBBtQAKfDqIdp8VHKUXxk0/SsHkzjQnd2DHofip3V2OyGPjRHf3oPjjxXBRXCCGECEkS+HSQpunswekV7/5fqv73faqjurFt6AM0lruIiLVyzd0Xk5gReQ5KKoQQQoQuCXw6SKCrq1ngU/ftOo7Mm0d5bF+2D74HtwMSMyK59t6LCY+WDUaFEEKItiaBTwfRfJGPf4yPq6iIwlmzKEoYyq6+P0fpBtL7xnL1rwdgscmPRQghhGgP8g3bQZpvUqpcLgrun83+yGHsy74egF4jkrn8tr4YTbLflhBCCNFeJPDpIP4xPrqCkhf/wu6yWPb18AY9g65MZ8wNPWQlZiGEEKKdSfNCB9GM3qDGVXyE8kWLKOgyHoAR12Ux9v/0lKBHCCGE6ABnFPjMnz+frKwsbDYbQ4cOZfXq1SfM/+qrr9K3b1/sdju9e/dm8eLFQdddLhdPPvkk2dnZ2Gw2Bg4cyL///e+gPDU1NcyaNYvMzEzsdjtjxoxh/fr1QXmmT5+OpmlBx6hRo86kim3OEBjjo6gLT6XRnoDRbGDQjzLOccmEEEKIzuO0u7ree+89Zs2axfz58xk7dix///vfmTRpEjt27CAjo+WX+IIFC3jooYdYuHAhw4cP57vvvuOuu+4iNjaW6667DoBHH32UJUuWsHDhQvr06cOyZcu4/vrrWbNmDYMHDwbgl7/8Jdu2beOdd94hLS2NJUuWcOWVV7Jjxw66dOkSeL+rr76aRYsWBZ5bLOfH7uWab9FlpRmo6n8VAOl9YjFbZDVmIYQQoqNo6nh7KBzHyJEjGTJkCAsWLAik9e3bl6lTpzJv3rwW+ceMGcPYsWP505/+FEibNWsWGzZs4OuvvwYgLS2NRx55hHvvvTeQZ+rUqURERLBkyRIaGhqIjIzk448/5tprrw3kGTRoEJMnT+bpp58GvC0+lZWVfPTRR6dTpYDq6mqio6OpqqoiKirqjO5xPFv/uY5VX9YR5yzAlNWDksJGxv+0N/0u7XLyFwshhBDiuE7n+/u0urqcTicbN25k4sSJQekTJ05kzZo1rb7G4XBgs9mC0ux2O9999x0ul+uEefyBkdvtxuPxnDCP34oVK0hKSqJXr17cddddlJSUnE4V203isD4AVNrTKSlsBKDbxQnnskhCCCFEp3NagU9ZWRkej4fk5OSg9OTkZIqLi1t9zVVXXcXrr7/Oxo0bUUqxYcMG3nzzTVwuF2VlZYE8L774Inv27EHXdXJycvj4448pKvLuVxUZGcno0aN56qmnOHz4MB6PhyVLlrBu3bpAHoBJkybx7rvv8uWXX/LCCy+wfv16Lr/8chwOR6tlczgcVFdXBx3tJTrRu6u67vE2sCV1i5JFCoUQQogOdkaDm4/dMFMpddxNNB977DEmTZrEqFGjMJvNTJkyhenTpwNgNHrHt7z88sv07NmTPn36YLFYuO+++7jjjjsC1wHeeecdlFJ06dIFq9XKK6+8wk9+8pOgPNOmTePaa6+lf//+XHfddXz++efs3r2bf/3rX62Wbd68eURHRweO9PT0M/k4ToktwozZ2lTWrIHS2iOEEEJ0tNMKfBISEjAajS1ad0pKSlq0AvnZ7XbefPNN6uvrOXjwIHl5eXTr1o3IyEgSErxf/omJiXz00UfU1dVx6NAhdu3aRUREBFlZWYH7ZGdns3LlSmpra8nPzw90lTXPc6zU1FQyMzPZs2dPq9cfeughqqqqAkd+fv7pfBynRdM0ohLsgec9h7X+eQkhhBCi/ZxW4GOxWBg6dCg5OTlB6Tk5OYwZM+aErzWbzXTt2hWj0cjSpUuZPHkyBkPw29tsNrp06YLb7eb9999nypQpLe4THh5OamoqFRUVLFu2rNU8fuXl5eTn55OamtrqdavVSlRUVNDRnsbe2IP4LhH0v6xLoOtLCCGEEB3ntKezz549m5///OcMGzaM0aNH89prr5GXl8eMGTMAbytKYWFhYK2e3bt389133zFy5EgqKip48cUX2bZtG2+//XbgnuvWraOwsJBBgwZRWFjI448/jq7rPPjgg4E8y5YtQylF79692bt3Lw888AC9e/fmjjvuAKC2tpbHH3+cG2+8kdTUVA4ePMjDDz9MQkIC119//Vl9SG0l/aI4brloxLkuhhBCCNFpnXbgM23aNMrLy3nyyScpKiqif//+fPbZZ2RmZgJQVFREXl5eIL/H4+GFF14gNzcXs9nMhAkTWLNmDd26dQvkaWxs5NFHH2X//v1ERERwzTXX8M477xATExPIU1VVxUMPPURBQQFxcXHceOONPPPMM5jNZsA7Xmjr1q0sXryYyspKUlNTmTBhAu+99x6RkZFn+PEIIYQQIpSc9jo+oaw91/ERQgghRPtot3V8hBBCCCEuZBL4CCGEEKLTkMBHCCGEEJ2GBD5CCCGE6DQk8BFCCCFEpyGBjxBCCCE6DQl8hBBCCNFpSOAjhBBCiE5DAh8hhBBCdBoS+AghhBCi05DARwghhBCdhgQ+QgghhOg0Tnt39lDm36+1urr6HJdECCGEEKfK/719KvuuS+DTTE1NDQDp6ennuCRCCCGEOF01NTVER0efMI+mTiU86iR0Xefw4cNERkaiaVqb3ru6upr09HTy8/OJiopq03ufz6TeUu9Q1xnrDFJvqff5RSlFTU0NaWlpGAwnHsUjLT7NGAwGunbt2q7vERUVdV7+0rQ3qXfn0hnr3RnrDFLvzuZ8rvfJWnr8ZHCzEEIIIToNCXyEEEII0WlI4NNBrFYrc+fOxWq1nuuidCipt9Q71HXGOoPUW+p94ZLBzUIIIYToNKTFRwghhBCdhgQ+QgghhOg0JPARQgghRKchgY8QQgghOg0JfDrA/PnzycrKwmazMXToUFavXn2ui3RWVq1axXXXXUdaWhqapvHRRx8FXVdK8fjjj5OWlobdbmf8+PFs3749KI/D4eA3v/kNCQkJhIeH8+Mf/5iCgoIOrMXpmTdvHsOHDycyMpKkpCSmTp1Kbm5uUJ5QrPeCBQu4+OKLA4uWjR49ms8//zxwPRTr3Jp58+ahaRqzZs0KpIVi3R9//HE0TQs6UlJSAtdDsc5+hYWF/OxnPyM+Pp6wsDAGDRrExo0bA9dDse7dunVr8fPWNI17770XCM06A6BEu1q6dKkym81q4cKFaseOHWrmzJkqPDxcHTp06FwX7Yx99tln6pFHHlHvv/++AtSHH34YdP25555TkZGR6v3331dbt25V06ZNU6mpqaq6ujqQZ8aMGapLly4qJydHff/992rChAlq4MCByu12d3BtTs1VV12lFi1apLZt26Y2b96srr32WpWRkaFqa2sDeUKx3p988on617/+pXJzc1Vubq56+OGHldlsVtu2bVNKhWadj/Xdd9+pbt26qYsvvljNnDkzkB6KdZ87d67q16+fKioqChwlJSWB66FYZ6WUOnr0qMrMzFTTp09X69atUwcOHFBffPGF2rt3byBPKNa9pKQk6Gedk5OjAPXVV18ppUKzzkopJYFPOxsxYoSaMWNGUFqfPn3UH/7wh3NUorZ1bOCj67pKSUlRzz33XCCtsbFRRUdHq7/97W9KKaUqKyuV2WxWS5cuDeQpLCxUBoNB/fvf/+6wsp+NkpISBaiVK1cqpTpPvZVSKjY2Vr3++uudos41NTWqZ8+eKicnR40bNy4Q+IRq3efOnasGDhzY6rVQrbNSSs2ZM0ddcsklx70eynVvbubMmSo7O1vpuh7SdZaurnbkdDrZuHEjEydODEqfOHEia9asOUelal8HDhyguLg4qM5Wq5Vx48YF6rxx40ZcLldQnrS0NPr373/BfC5VVVUAxMXFAZ2j3h6Ph6VLl1JXV8fo0aM7RZ3vvfderr32Wq688sqg9FCu+549e0hLSyMrK4tbbrmF/fv3A6Fd508++YRhw4Zx0003kZSUxODBg1m4cGHgeijX3c/pdLJkyRJ+8YtfoGlaSNdZAp92VFZWhsfjITk5OSg9OTmZ4uLic1Sq9uWv14nqXFxcjMViITY29rh5zmdKKWbPns0ll1xC//79gdCu99atW4mIiMBqtTJjxgw+/PBDLrroopCuM8DSpUv5/vvvmTdvXotroVr3kSNHsnjxYpYtW8bChQspLi5mzJgxlJeXh2ydAfbv38+CBQvo2bMny5YtY8aMGfz2t79l8eLFQOj+vJv76KOPqKysZPr06UBo11l2Z+8AmqYFPVdKtUgLNWdS5wvlc7nvvvvYsmULX3/9dYtroVjv3r17s3nzZiorK3n//fe5/fbbWblyZeB6KNY5Pz+fmTNnsnz5cmw223HzhVrdJ02aFDgfMGAAo0ePJjs7m7fffptRo0YBoVdnAF3XGTZsGM8++ywAgwcPZvv27SxYsIDbbrstkC8U6+73xhtvMGnSJNLS0oLSQ7HO0uLTjhISEjAajS0i35KSkhZRdKjwzwA5UZ1TUlJwOp1UVFQcN8/56je/+Q2ffPIJX331FV27dg2kh3K9LRYLPXr0YNiwYcybN4+BAwfy8ssvh3SdN27cSElJCUOHDsVkMmEymVi5ciWvvPIKJpMpUPZQrHtz4eHhDBgwgD179oT0zzs1NZWLLrooKK1v377k5eUBof3vG+DQoUN88cUX/PKXvwykhXKdJfBpRxaLhaFDh5KTkxOUnpOTw5gxY85RqdpXVlYWKSkpQXV2Op2sXLkyUOehQ4diNpuD8hQVFbFt27bz9nNRSnHffffxwQcf8OWXX5KVlRV0PVTr3RqlFA6HI6TrfMUVV7B161Y2b94cOIYNG8ZPf/pTNm/eTPfu3UO27s05HA527txJampqSP+8x44d22J5it27d5OZmQmE/r/vRYsWkZSUxLXXXhtIC+k6d/Ro6s7GP539jTfeUDt27FCzZs1S4eHh6uDBg+e6aGespqZGbdq0SW3atEkB6sUXX1SbNm0KTNF/7rnnVHR0tPrggw/U1q1b1a233trqFMiuXbuqL774Qn3//ffq8ssvP6+nQN59990qOjparVixImj6Z319fSBPKNb7oYceUqtWrVIHDhxQW7ZsUQ8//LAyGAxq+fLlSqnQrPPxNJ/VpVRo1v13v/udWrFihdq/f7/69ttv1eTJk1VkZGTg71Uo1lkp75IFJpNJPfPMM2rPnj3q3XffVWFhYWrJkiWBPKFad4/HozIyMtScOXNaXAvVOkvg0wFeffVVlZmZqSwWixoyZEhgCvSF6quvvlJAi+P2229XSnmnfs6dO1elpKQoq9WqLrvsMrV169agezQ0NKj77rtPxcXFKbvdriZPnqzy8vLOQW1OTWv1BdSiRYsCeUKx3r/4xS8Cv7uJiYnqiiuuCAQ9SoVmnY/n2MAnFOvuX6fFbDartLQ0dcMNN6jt27cHrodinf0+/fRT1b9/f2W1WlWfPn3Ua6+9FnQ9VOu+bNkyBajc3NwW10K1zppSSp2TpiYhhBBCiA4mY3yEEEII0WlI4COEEEKITkMCHyGEEEJ0GhL4CCGEEKLTkMBHCCGEEJ2GBD5CCCGE6DQk8BFCCCFEpyGBjxBCCCE6DQl8hBAhZfr06UydOvVcF0MIcZ6SwEcIIYQQnYYEPkKIC9L//u//MmDAAOx2O/Hx8Vx55ZU88MADvP3223z88cdomoamaaxYsQKAwsJCpk2bRmxsLPHx8UyZMoWDBw8G7udvKXriiSdISkoiKiqKX//61zidznNTQSFEuzCd6wIIIcTpKioq4tZbb+WPf/wj119/PTU1NaxevZrbbruNvLw8qqurWbRoEQBxcXHU19czYcIELr30UlatWoXJZOLpp5/m6quvZsuWLVgsFgD+85//YLPZ+Oqrrzh48CB33HEHCQkJPPPMM+eyukKINiSBjxDiglNUVITb7eaGG24gMzMTgAEDBgBgt9txOBykpKQE8i9ZsgSDwcDrr7+OpmkALFq0iJiYGFasWMHEiRMBsFgsvPnmm4SFhdGvXz+efPJJHnjgAZ566ikMBmkgFyIUyL9kIcQFZ+DAgVxxxRUMGDCAm266iYULF1JRUXHc/Bs3bmTv3r1ERkYSERFBREQEcXFxNDY2sm/fvqD7hoWFBZ6PHj2a2tpa8vPz27U+QoiOIy0+QogLjtFoJCcnhzVr1rB8+XL++te/8sgjj7Bu3bpW8+u6ztChQ3n33XdbXEtMTDzp+/lbiYQQFz4JfIQQFyRN0xg7dixjx47lv/7rv8jMzOTDDz/EYrHg8XiC8g4ZMoT33nsvMGj5eH744QcaGhqw2+0AfPvtt0RERNC1a9d2rYsQouNIV5cQ4oKzbt06nn32WTZs2EBeXh4ffPABpaWl9O3bl27durFlyxZyc3MpKyvD5XLx05/+lISEBKZMmcLq1as5cOAAK1euZObMmRQUFATu63Q6ufPOO9mxYweff/45c+fO5b777pPxPUKEEGnxEUJccKKioli1ahUvvfQS1dXVZGZm8sILLzBp0iSGDRvGihUrGDZsGLW1tXz11VeMHz+eVatWMWfOHG644QZqamro0qULV1xxRVAL0BVXXEHPnj257LLLcDgc3HLLLTz++OPnrqJCiDanKaXUuS6EEEKca9OnT6eyspKPPvroXBdFCNGOpP1WCCGEEJ2GBD5CCCGE6DSkq0sIIYQQnYa0+AghhBCi05DARwghhBCdhgQ+QgghhOg0JPARQgghRKchgY8QQgghOg0JfIQQQgjRaUjgI4QQQohOQwIfIYQQQnQaEvgIIYQQotP4/3XDi/wtpeDXAAAAAElFTkSuQmCC",
- "text/plain": [
- "