forked from karkadad/tune
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconsolidate.py
253 lines (207 loc) · 9.47 KB
/
consolidate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# Copyright 2021 Hugging Face Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from datetime import datetime, timezone
from glob import glob
from itertools import chain
from os import path
from pathlib import Path
from typing import Type, List, Tuple
import pandas as pd
from argparse import ArgumentParser
import yaml
from pandas import ExcelWriter
from rich.console import Console
from rich.table import Table
# Format name -> extension
SUPPORTED_EXPORT_FORMAT = {
"csv": "csv",
"excel": "xlsx"
}
SCALING_CHOICES = {"batch-size-scaling", "core-count-scaling"}
SCALING_HELP = "Which scaling metodology was used:\n \
\t- batch-size-scaling: The total number of cores for the original batch size remains the same - \
we use all the cores for the given batch size but break up the problem into smaller problems \
with fewer cores for the smaller problem sizes\n" \
"\t core-count-scaling: We vary the number of cores for the given batch size"
LATENCY_COLUMNS = {
"latency_mean",
"latency_std",
"latency_50",
"latency_90",
"latency_95",
"latency_99",
"latency_999",
}
LATENCY_THROUGHPUT_COLUMNS = {
"throughput",
}.union(LATENCY_COLUMNS)
SUMMARY_SUMMING_COLUMNS = {
"nb_forwards",
"throughput",
"batch_size",
}
FINAL_COLUMNS_ORDERING = ["backend.name", "batch_size", "sequence_length", "openmp.backend", "malloc", "use_huge_page", "num_instances"]
RICH_DISPLAYED_COLUMNS = {
"backend.name": "Backend",
"malloc": "Malloc",
"openmp.backend": "OpenMP",
"use_huge_page": "Huge Pages",
"batch_size": "Batch",
"sequence_length": "Sequence",
"latency_mean": "Avg. Latency",
"latency_std": "Std. Latency",
"throughput": "Throughput",
"num_core_per_instance": "Cores"
}
MULTI_INSTANCES_VALIDATION_COLUMNS = [
"batch_size",
"sequence_length",
"backend.name",
"openmp.backend",
"malloc",
"backend.num_threads",
"use_huge_page"
]
def flatten_yaml(path: Path, loader: Type[yaml.Loader] = yaml.SafeLoader) -> pd.DataFrame:
with open(path, "r") as yaml_f:
content = yaml.load(yaml_f, Loader=loader)
return pd.json_normalize(content)
def gather_results(folder: Path, is_multi_instances: bool) -> Tuple[pd.DataFrame, List[str]]:
# List all csv results
results_f = [(f, f.parent.joinpath(".hydra/config.yaml")) for f in folder.glob("**/results.csv")]
results_df = pd.concat([
# This will concatenate columns from the benchmarks along with config columns
pd.concat((pd.read_csv(results, index_col=0), flatten_yaml(config)), axis="columns")
for results, config in results_f
], axis="index")
existing_columns = list(set(FINAL_COLUMNS_ORDERING).intersection(results_df.columns))
results_df = results_df.sort_values(existing_columns)
# Ensure the number of instances (according to the sum of instance_sum) matchs num_instances field
if is_multi_instances:
results_df["is_valid"] = results_df.groupby(MULTI_INSTANCES_VALIDATION_COLUMNS)["instance_id"].transform("count")
results_df["is_valid"] = results_df["is_valid"] == results_df["num_instances"]
else:
results_df["is_valid"] = True
results_df.fillna("N/A", inplace=True)
if len(results_df) == 0:
raise ValueError(f"No results.csv file were found in {folder}")
return results_df, existing_columns
def aggregate_multi_instances_results(results_df: pd.DataFrame, grouping_columns: List[str], mode: str):
agg_df = results_df.copy()
agg_df = agg_df.groupby(grouping_columns)
transforms = {
"latency_mean": ["min", "max", "mean"],
"throughput": ["sum"],
"instance_id": ["sum"],
"is_valid": ["all"]
}
# How to aggregate cores and batch
if mode == "batch-size-scaling":
transforms["batch_size"] = "sum"
return agg_df.agg(transforms)
def show_results_in_console(df: pd.DataFrame, sorting_columns: List[str]):
console = Console(width=200)
table = Table(
show_header=True, header_style="bold",
title="Latency & Throughput for each framework (latencies given in ms)",
)
# Create copy
local_df = df.copy()
local_df = local_df.assign(**local_df[LATENCY_COLUMNS].apply(lambda x: round((x * 1e-6), 2)))
# Filter out columns
displayed_columns = {
column_id: column_title
for column_id, column_title in RICH_DISPLAYED_COLUMNS.items()
if column_id in local_df.columns
}
for column_name in displayed_columns.values():
table.add_column(column_name, justify="center")
table.add_column("Instance ID", justify="center")
# Add rows
for _, item_columns in local_df.sort_values(sorting_columns, ascending=True).iterrows():
table.add_row(*[str(item_columns[c]) for c in chain(displayed_columns.keys(), ["instance_id"])])
# Display the table
console.print(table)
if __name__ == '__main__':
parser = ArgumentParser("Hugging Face Model Benchmark")
parser.add_argument("--results-folder", type=Path, help="Where the benchmark results have been saved")
parser.add_argument("--multi-instances-scaling", choices=SCALING_CHOICES, help=SCALING_HELP)
parser.add_argument("--format", choices=SUPPORTED_EXPORT_FORMAT.keys(), default="csv", help="Export file format")
parser.add_argument("output_folder", type=Path, help="Where the resulting report will be saved")
# Parse command line arguments
args = parser.parse_args()
args.now = datetime.now(timezone.utc).astimezone()
args.experiment_id = path.split(args.results_folder)[-1]
args.format_ext = SUPPORTED_EXPORT_FORMAT[args.format.lower()]
for name in {"aggregated", "consolidated"}:
value = f"{name}_{args.experiment_id}_" \
f"{args.now.date().isoformat()}T{args.now.time().strftime('%H-%M')}" \
f".{args.format_ext}"
setattr(args, f"{name}_filename", value)
# Ensure everything looks right
if not args.results_folder.exists():
print(f"Folder {args.results_folder} doesn't exist")
exit(1)
try:
# Detect folder run type from folder structure
instances_folder = glob(f"{args.results_folder.as_posix()}/*")
args.is_multi_instances = len(instances_folder) > 1
args.instances = {path.split(instance_folder)[-1] for instance_folder in instances_folder}
args.is_multirun = {
path.split(instance_folder)[-1]: path.exists(path.join(instance_folder, "multirun.yaml"))
for instance_folder in instances_folder
}
print(
f"Detected following structure:"
f"\n\t- Multi Instance: {args.is_multi_instances} ({len(args.instances)} instances)"
f"\n\t- Multirun: {args.is_multirun}"
)
# If we detect multi instance and no scaling mode is provided, ask for a value
if args.is_multi_instances and args.multi_instances_scaling is None:
print(
"Warning:\n\tNo mode for handling multi-instances aggregation was provided. "
"Only individual runs will be saved.\n"
"\tTo include multi-instances aggregation results, "
f"please use --multi-instance-scaling={SCALING_CHOICES}\n"
)
# Ensure output folder exists
args.output_folder.mkdir(exist_ok=True, parents=True)
# Gather the results to manipulate
consolidated_df, sorting_columns = gather_results(args.results_folder, args.is_multi_instances)
if args.is_multi_instances and args.multi_instances_scaling is not None:
agg_df = aggregate_multi_instances_results(consolidated_df, sorting_columns, args.multi_instances_scaling)
if args.format == "csv":
consolidated_df.to_csv(args.output_folder.joinpath(args.consolidated_filename))
if args.is_multi_instances and args.multi_instances_scaling is not None:
agg_df.to_csv(args.output_folder.joinpath(args.aggregated_filename))
else:
with ExcelWriter(args.output_folder.joinpath(args.consolidated_filename)) as excel_writer:
consolidated_df.to_excel(excel_writer, sheet_name="individuals")
if args.is_multi_instances and args.multi_instances_scaling is not None:
agg_df.to_excel(excel_writer, sheet_name="aggregated_multi_instances", merge_cells=False)
show_results_in_console(consolidated_df, sorting_columns)
except ValueError as ve:
print(ve)