-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathtest.py
123 lines (117 loc) · 5.01 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import os
import torch
import warnings
import pandas as pd
import numpy as np
import torch.backends.cudnn as cudnn
from tqdm import tqdm
from glob import glob
from PIL import Image,ImageFile
from config import configs
from models.model import get_model
from torch.utils.data import Dataset,DataLoader
from torchvision import transforms
from utils.misc import get_files
from IPython import embed
ImageFile.LOAD_TRUNCATED_IMAGES = True
warnings.filterwarnings("ignore")
os.environ['CUDA_VISIBLE_DEVICES'] = configs.gpu_id
len_data = 0
class WeatherTTADataset(Dataset):
def __init__(self,labels_file,aug):
imgs = []
for index, row in labels_file.iterrows():
imgs.append((row["FileName"],row["type"]))
self.imgs = imgs
self.length = len(imgs)
global len_data
len_data = self.length
self.aug = aug
self.Hflip = transforms.RandomHorizontalFlip(p=1)
self.Vflip = transforms.RandomVerticalFlip(p=1)
self.Rotate = transforms.functional.rotate
self.resize = transforms.Resize((configs.input_size,configs.input_size))
self.randomCrop = transforms.Compose([transforms.Resize(int(configs.input_size * 1.2)),
transforms.CenterCrop(configs.input_size),
])
def __getitem__(self,index):
filename,label_tmp = self.imgs[index]
img = Image.open(configs.test_folder + os.sep + filename).convert('RGB')
img = self.transform_(img,self.aug)
return img,filename
def __len__(self):
return self.length
def transform_(self,data_torch,aug):
if aug == 'Ori':
data_torch = data_torch
data_torch = self.resize(data_torch)
if aug == 'Ori_Hflip':
data_torch = self.Hflip(data_torch)
data_torch = self.resize(data_torch)
if aug == 'Ori_Vflip':
data_torch = self.Vflip(data_torch)
data_torch = self.resize(data_torch)
if aug == 'Ori_Rotate_90':
data_torch = self.Rotate(data_torch, 90)
data_torch = self.resize(data_torch)
if aug == 'Ori_Rotate_180':
data_torch = self.Rotate(data_torch, 180)
data_torch = self.resize(data_torch)
if aug == 'Ori_Rotate_270':
data_torch = self.Rotate(data_torch, 270)
data_torch = self.resize(data_torch)
if aug == 'Crop':
# print(data_torch.size)
data_torch = self.randomCrop(data_torch)
data_torch = data_torch
if aug == 'Crop_Hflip':
data_torch = self.randomCrop(data_torch)
data_torch = self.Hflip(data_torch)
if aug == 'Crop_Vflip':
data_torch = self.randomCrop(data_torch)
data_torch = self.Vflip(data_torch)
if aug == 'Crop_Rotate_90':
data_torch = self.randomCrop(data_torch)
data_torch = self.Rotate(data_torch, 90)
if aug == 'Crop_Rotate_180':
data_torch = self.randomCrop(data_torch)
data_torch = self.Rotate(data_torch, 180)
if aug == 'Crop_Rotate_270':
data_torch = self.randomCrop(data_torch)
data_torch = self.Rotate(data_torch, 270)
data_torch = transforms.ToTensor()(data_torch)
data_torch = transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])(data_torch)
return data_torch
#aug = ['Ori','Ori_Hflip','Ori_Vflip','Ori_Rotate_90','Ori_Rotate_180','Ori_Rotate_270',
# 'Crop','Crop_Hflip','Crop_Vflip','Crop_Rotate_90','Crop_Rotate_180','Crop_Rotate_270']
aug = ['Ori_Hflip']
cpk_filename = configs.checkpoints + os.sep + configs.model_name + "-checkpoint.pth.tar"
best_cpk = cpk_filename.replace("-checkpoint.pth.tar","-best_model.pth.tar")
checkpoint = torch.load(best_cpk)
cudnn.benchmark = True
model = get_model()
model.load_state_dict(checkpoint['state_dict'])
model.eval()
test_files = pd.read_csv(configs.submit_example)
with torch.no_grad():
y_pred_prob = torch.FloatTensor([])
for a in tqdm(aug):
print(a)
test_set = WeatherTTADataset(test_files, a)
test_loader = DataLoader(dataset=test_set, batch_size=configs.bs, shuffle=False,
num_workers=4, pin_memory=True, sampler=None)
total = 0
correct = 0
for inputs, labels in tqdm(test_loader):
inputs = inputs.cuda()
outputs = model(inputs)
outputs = torch.nn.functional.softmax(outputs, dim=1)
# print(outputs.shape)
y_pred_prob = torch.cat([y_pred_prob, outputs.to("cpu")], dim=0)
#embed()
y_pred_prob = y_pred_prob.reshape((len(aug), len_data, configs.num_classes))
y_pred_prob = torch.sum(y_pred_prob, 0) / (len(aug) * 1.0)
_, predicted_all = torch.max(y_pred_prob, 1)
predicted = predicted_all + 1 # If the category starts with 1 ,else delet 1
test_files.type = predicted.data.cpu().numpy().tolist()
test_files.to_csv('./submits/%s_baseline.csv' % configs.model_name, index=False)