-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathevalrank.py
executable file
·118 lines (100 loc) · 3.68 KB
/
evalrank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#!/usr/bin/env python
"""Evaluate word representation by similarity ranking to reference."""
import sys
import codecs
import logging
import numpy
import wvlib
from os.path import basename, splitext
from collections import OrderedDict
from scipy.stats import spearmanr
from logging import info
DEFAULT_ENCODING = 'UTF-8'
class FormatError(Exception):
pass
def argparser():
try:
import argparse
except ImportError:
import compat.argparse as argparse
ap=argparse.ArgumentParser()
ap.add_argument('-l', '--lowercase', default=None, action='store_true',
help='lowercase words in reference')
ap.add_argument('-r', '--max-rank', metavar='INT', default=None,
type=int, help='only consider r most frequent words')
ap.add_argument('-q', '--quiet', default=False, action='store_true')
ap.add_argument('vectors', help='word vectors')
ap.add_argument('references', metavar='FILE', nargs='+',
help='reference similarities')
return ap
def cosine(v1, v2):
return numpy.dot(v1/numpy.linalg.norm(v1), v2/numpy.linalg.norm(v2))
def dot(v1, v2):
return numpy.dot(v1, v2)
def evaluate(wv, reference):
"""Evaluate wv against reference, return (rho, count) where rwo is
Spearman's rho and count is the number of reference word pairs
that could be evaluated against.
"""
gold, predicted, oov = [], [], OrderedDict()
for words, sim in sorted(reference, key=lambda ws: ws[1]):
w1, w2, v1, v2 = words[0], words[1], None, None
try:
v1 = wv[w1]
except KeyError:
oov[w1] = True
try:
v2 = wv[w2]
except KeyError:
oov[w2] = True
if v1 is None or v2 is None:
continue
gold.append((words, sim))
predicted.append((words, cosine(v1, v2)))
if oov:
info('OOV: ' + ', '.join(oov.keys()))
simlist = lambda ws: [s for w,s in ws]
rho, p = spearmanr(simlist(gold), simlist(predicted))
return (rho, len(gold))
def read_reference(name, options=None, encoding=DEFAULT_ENCODING):
"""Return similarity ranking data as list of ((w1, w2), sim) tuples."""
data = []
with codecs.open(name, 'rU', encoding=encoding) as f:
for line in f:
# try tab-separated first, fall back to any space
fields = line.strip().split('\t')
if len(fields) != 3:
fields = line.strip().split()
if len(fields) != 3:
raise FormatError(line)
if options and options.lowercase:
fields[0], fields[1] = fields[0].lower(), fields[1].lower()
try:
data.append(((fields[0], fields[1]), float(fields[2])))
except ValueError:
raise FormatError(line)
return data
def baseroot(name):
return splitext(basename(name))[0]
def main(argv=None):
if argv is None:
argv = sys.argv
options = argparser().parse_args(argv[1:])
if options.quiet:
logging.getLogger().setLevel(logging.ERROR)
try:
wv = wvlib.load(options.vectors, max_rank=options.max_rank)
wv = wv.normalize()
except Exception, e:
print >> sys.stderr, 'Error: %s' % str(e)
return 1
references = [(r, read_reference(r, options)) for r in options.references]
print '%20s\trho\tmissed\ttotal\tratio' % 'dataset'
for name, ref in references:
rho, count = evaluate(wv, ref)
total, miss = len(ref), len(ref) - count
print '%20s\t%.4f\t%d\t%d\t(%.2f%%)' % \
(baseroot(name), rho, miss, total, 100.*miss/total)
return 0
if __name__ == '__main__':
sys.exit(main(sys.argv))