diff --git a/ga/19principal.tex b/ga/19principal.tex index f02e481..d2d40fd 100644 --- a/ga/19principal.tex +++ b/ga/19principal.tex @@ -49,7 +49,7 @@ \subsection{Lie group actions on a manifold} \ei satisfying \ben[label=\roman*)] -\item $\forall \, p \in M :\ p\racts g = p$; +\item $\forall \, p \in M :\ p\racts e = p$; \item $\forall \, g_1,g_2\in G : \forall \, p\in M : \ p \racts (g_1\bullet g_2) = (p \racts g_1) \racts g_2$. \een \ed @@ -197,7 +197,7 @@ \subsection{Lie group actions on a manifold} A left $G$-action $\lacts\cl G\times M\to M$ is said to be \ben[label=\roman*)] \item \emph{free} if for all $p\in M$, we have $S_p=\{e\}$; -\item \emph{transitive} if for all $p,q\in M$, there exists $g\in G$ such that $p=g\lacts p$. +\item \emph{transitive} if for all $p,q\in M$, there exists $g\in G$ such that $q=g\lacts p$. \een \ed @@ -229,7 +229,7 @@ \subsection{Lie group actions on a manifold} \bp If $\lacts\cl G \times M \to M$ is a free action, then \bse -\forall \, p \in G :\ G_p \cong_{\mathrm{diff}} G. +\forall \, p \in M :\ G_p \cong_{\mathrm{diff}} G. \ese \ep @@ -281,11 +281,11 @@ \subsection{Principal fibre bundles} \ben[label=\alph*)] \item Let $M$ be a smooth manifold. Consider the space \bse -L_pM := \{(e_1,\ldots,e_{\dim M})\mid e_1,\ldots,e_{\dim M} \text{ is a basis of }T_pM\} \cong_{\mathrm{vec}} \GL(\dim M,\R). +L_pM := \{(e_1,\ldots,e_{\dim M})\mid e_1,\ldots,e_{\dim M} \text{ is a basis of }T_pM\} \cong_{\mathrm{LG}} \GL(\dim M,\R). \ese We know from linear algebra that the bases of a vector space are related to each other by invertible linear transformations. Hence, we have \bse -L_pM \cong_{\mathrm{vec}} \GL(\dim M,\R). +L_pM \cong_{\mathrm{LG}} \GL(\dim M,\R). \ese We define the frame bundle of $M$ as \bse @@ -294,7 +294,7 @@ \subsection{Principal fibre bundles} with the obvious projection map $\pi\cl LM \to M$ sending each basis $(e_1,\ldots,e_{\dim M})$ to the unique point $p\in M$ such that $(e_1,\ldots,e_{\dim M})$ is a basis of $T_pM$. By proceeding similarly to the case of the tangent bundle, we can equip $LM$ with a smooth structure inherited from that of $M$. We then find \bse -\dim LM = \dim M + \dim T_pM = \dim M + (\dim M)^2. +\dim LM = \dim M + \dim L_pM = \dim M + (\dim M)^2. \ese \item We would now like to make $LM \xrightarrow{\,\pi\,}M$ into a principal $\GL(\dim M,\R)$-bundle. We define a right $\GL(\dim M,\R)$-action on $LM$ by \bse