-
Notifications
You must be signed in to change notification settings - Fork 3
/
auxillary_model.py
554 lines (464 loc) · 23.3 KB
/
auxillary_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
"""
Training code for agents w/ auxillary loss. It's a modified version of RecurrentPPO from stable baselines3 contrib that does auxillary losses.
"""
import time
from copy import deepcopy
from typing import Any, Dict, Optional, Tuple, Type, Union
import gym
import numpy as np
from gym import spaces
from stable_baselines3.common.buffers import RolloutBuffer
from stable_baselines3.common.callbacks import BaseCallback
from stable_baselines3.common.on_policy_algorithm import OnPolicyAlgorithm
from stable_baselines3.common.policies import ActorCriticPolicy
from stable_baselines3.common.type_aliases import GymEnv, MaybeCallback, Schedule
from stable_baselines3.common.utils import explained_variance, get_schedule_fn, obs_as_tensor, safe_mean
from stable_baselines3.common.vec_env import VecEnv
from torch.nn import functional as F
from sb3_contrib.common.recurrent.buffers import RecurrentDictRolloutBuffer, RecurrentRolloutBuffer
from sb3_contrib.common.recurrent.policies import RecurrentActorCriticPolicy
from sb3_contrib.common.recurrent.type_aliases import RNNStates
from auxillary_policy import DualFeatureRecurrentActorCriticPolicy, AutoDualFeatureRecurrentActorCriticPolicy , ProgramDualFeatureRecurrentActorCriticPolicy
import torch as th
from stable_baselines3.common.policies import register_policy
register_policy("DualFeatureRecurrentActorCriticPolicy", DualFeatureRecurrentActorCriticPolicy)
register_policy("AutoDualFeatureRecurrentActorCriticPolicy", AutoDualFeatureRecurrentActorCriticPolicy)
register_policy("ProgramDualFeatureRecurrentActorCriticPolicy", ProgramDualFeatureRecurrentActorCriticPolicy)
class RecurrentPPOLanguage(OnPolicyAlgorithm):
"""
Proximal Policy Optimization algorithm (PPO) (clip version)
with support for recurrent policies (LSTM).
Based on the original Stable Baselines 3 implementation.
Introduction to PPO: https://spinningup.openai.com/en/latest/algorithms/ppo.html
:param policy: The policy model to use (MlpPolicy, CnnPolicy, ...)
:param env: The environment to learn from (if registered in Gym, can be str)
:param learning_rate: The learning rate, it can be a function
of the current progress remaining (from 1 to 0)
:param n_steps: The number of steps to run for each environment per update
(i.e. batch size is n_steps * n_env where n_env is number of environment copies running in parallel)
:param batch_size: Minibatch size
:param n_epochs: Number of epoch when optimizing the surrogate loss
:param gamma: Discount factor
:param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator
:param clip_range: Clipping parameter, it can be a function of the current progress
remaining (from 1 to 0).
:param clip_range_vf: Clipping parameter for the value function,
it can be a function of the current progress remaining (from 1 to 0).
This is a parameter specific to the OpenAI implementation. If None is passed (default),
no clipping will be done on the value function.
IMPORTANT: this clipping depends on the reward scaling.
:param ent_coef: Entropy coefficient for the loss calculation
:param vf_coef: Value function coefficient for the loss calculation
:param max_grad_norm: The maximum value for the gradient clipping
:param target_kl: Limit the KL divergence between updates,
because the clipping is not enough to prevent large update
see issue #213 (cf https://github.com/hill-a/stable-baselines/issues/213)
By default, there is no limit on the kl div.
:param tensorboard_log: the log location for tensorboard (if None, no logging)
:param create_eval_env: Whether to create a second environment that will be
used for evaluating the agent periodically. (Only available when passing string for the environment)
:param policy_kwargs: additional arguments to be passed to the policy on creation
:param verbose: the verbosity level: 0 no output, 1 info, 2 debug
:param seed: Seed for the pseudo random generators
:param device: Device (cpu, cuda, ...) on which the code should be run.
Setting it to auto, the code will be run on the GPU if possible.
:param _init_setup_model: Whether or not to build the network at the creation of the instance
"""
def __init__(
self,
policy: Union[str, Type[RecurrentActorCriticPolicy]],
env: Union[GymEnv, str],
learning_rate: Union[float, Schedule] = 3e-4,
n_steps: int = 128,
batch_size: Optional[int] = 128,
n_epochs: int = 10,
gamma: float = 0.99,
gae_lambda: float = 0.95,
clip_range: Union[float, Schedule] = 0.2,
clip_range_vf: Union[None, float, Schedule] = None,
ent_coef: float = 0.0,
vf_coef: float = 0.5,
aux_coef: float= 0.3,
max_grad_norm: float = 0.5,
use_sde: bool = False,
sde_sample_freq: int = -1,
target_kl: Optional[float] = None,
sampling_strategy: str = "default", # "default" or "per_env"
tensorboard_log: Optional[str] = None,
create_eval_env: bool = False,
policy_kwargs: Optional[Dict[str, Any]] = None,
verbose: int = 0,
seed: Optional[int] = None,
device: Union[th.device, str] = "auto",
_init_setup_model: bool = True,
):
super().__init__(
policy,
env,
learning_rate=learning_rate,
n_steps=n_steps,
gamma=gamma,
gae_lambda=gae_lambda,
ent_coef=ent_coef,
vf_coef=vf_coef,
max_grad_norm=max_grad_norm,
use_sde=use_sde,
sde_sample_freq=sde_sample_freq,
tensorboard_log=tensorboard_log,
create_eval_env=create_eval_env,
policy_kwargs=policy_kwargs,
policy_base=ActorCriticPolicy,
verbose=verbose,
seed=seed,
device=device,
_init_setup_model=False,
supported_action_spaces=(
spaces.Box,
spaces.Discrete,
spaces.MultiDiscrete,
spaces.MultiBinary,
),
)
if 'Auto' in str(policy):
self.auxdim=16
elif 'Program' in str(policy):
self.auxdim=64
else:
self.auxdim=768
self.batch_size = batch_size
self.n_epochs = n_epochs
self.clip_range = clip_range
self.clip_range_vf = clip_range_vf
self.target_kl = target_kl
self._last_lstm_states = None
self.sampling_strategy = sampling_strategy
self.aux_coef=aux_coef
if _init_setup_model:
self._setup_model()
def _setup_model(self) -> None:
self._setup_lr_schedule()
self.set_random_seed(self.seed)
buffer_cls = (
RecurrentDictRolloutBuffer if isinstance(self.observation_space, gym.spaces.Dict) else RecurrentRolloutBuffer
)
self.policy = self.policy_class(
self.observation_space,
self.action_space,
self.lr_schedule,
use_sde=self.use_sde,
**self.policy_kwargs, # pytype:disable=not-instantiable
)
self.policy = self.policy.to(self.device)
lstm = self.policy.lstm_actor
if not isinstance(self.policy, RecurrentActorCriticPolicy):
raise ValueError("Policy must subclass RecurrentActorCriticPolicy")
hidden_state_shape = (self.n_steps, lstm.num_layers, self.n_envs, lstm.hidden_size)
lstm_states = (np.zeros(hidden_state_shape, dtype=np.float32), np.zeros(hidden_state_shape, dtype=np.float32))
single_hidden_state_shape = (lstm.num_layers, self.n_envs, lstm.hidden_size)
# hidden states for actor and critic
self._last_lstm_states = RNNStates(
(
th.zeros(single_hidden_state_shape).to(self.device),
th.zeros(single_hidden_state_shape).to(self.device),
),
(
th.zeros(single_hidden_state_shape).to(self.device),
th.zeros(single_hidden_state_shape).to(self.device),
),
)
self.rollout_buffer = buffer_cls(
self.n_steps,
self.observation_space,
self.action_space,
lstm_states,
self.device,
gamma=self.gamma,
gae_lambda=self.gae_lambda,
n_envs=self.n_envs,
sampling_strategy=self.sampling_strategy,
)
# Initialize schedules for policy/value clipping
self.clip_range = get_schedule_fn(self.clip_range)
if self.clip_range_vf is not None:
if isinstance(self.clip_range_vf, (float, int)):
assert self.clip_range_vf > 0, "`clip_range_vf` must be positive, " "pass `None` to deactivate vf clipping"
self.clip_range_vf = get_schedule_fn(self.clip_range_vf)
def _setup_learn(
self,
total_timesteps: int,
eval_env: Optional[GymEnv],
callback: MaybeCallback = None,
eval_freq: int = 10000,
n_eval_episodes: int = 5,
log_path: Optional[str] = None,
reset_num_timesteps: bool = True,
tb_log_name: str = "run",
) -> Tuple[int, BaseCallback]:
"""
Initialize different variables needed for training.
:param total_timesteps: The total number of samples (env steps) to train on
:param eval_env: Environment to use for evaluation.
:param callback: Callback(s) called at every step with state of the algorithm.
:param eval_freq: How many steps between evaluations
:param n_eval_episodes: How many episodes to play per evaluation
:param log_path: Path to a folder where the evaluations will be saved
:param reset_num_timesteps: Whether to reset or not the ``num_timesteps`` attribute
:param tb_log_name: the name of the run for tensorboard log
:return:
"""
total_timesteps, callback = super()._setup_learn(
total_timesteps,
eval_env,
callback,
eval_freq,
n_eval_episodes,
log_path,
reset_num_timesteps,
tb_log_name,
)
return total_timesteps, callback
def collect_rollouts(
self,
env: VecEnv,
callback: BaseCallback,
rollout_buffer: RolloutBuffer,
n_rollout_steps: int,
) -> bool:
"""
Collect experiences using the current policy and fill a ``RolloutBuffer``.
The term rollout here refers to the model-free notion and should not
be used with the concept of rollout used in model-based RL or planning.
:param env: The training environment
:param callback: Callback that will be called at each step
(and at the beginning and end of the rollout)
:param rollout_buffer: Buffer to fill with rollouts
:param n_steps: Number of experiences to collect per environment
:return: True if function returned with at least `n_rollout_steps`
collected, False if callback terminated rollout prematurely.
"""
assert isinstance(
rollout_buffer, (RecurrentRolloutBuffer, RecurrentDictRolloutBuffer)
), "RolloutBuffer doesn't support recurrent policy"
assert self._last_obs is not None, "No previous observation was provided"
# Switch to eval mode (this affects batch norm / dropout)
self.policy.set_training_mode(False)
n_steps = 0
rollout_buffer.reset()
# Sample new weights for the state dependent exploration
if self.use_sde:
self.policy.reset_noise(env.num_envs)
callback.on_rollout_start()
rollout_buffer.initial_lstm_states = deepcopy(self._last_lstm_states)
lstm_states = deepcopy(self._last_lstm_states)
while n_steps < n_rollout_steps:
if self.use_sde and self.sde_sample_freq > 0 and n_steps % self.sde_sample_freq == 0:
# Sample a new noise matrix
self.policy.reset_noise(env.num_envs)
with th.no_grad():
# Convert to pytorch tensor or to TensorDict
obs_tensor = obs_as_tensor(self._last_obs, self.device)
episode_starts = th.tensor(self._last_episode_starts).float().to(self.device)
actions, values, log_probs, lstm_states = self.policy.forward(obs_tensor, lstm_states, episode_starts)
actions = actions.cpu().numpy()
# Rescale and perform action
clipped_actions = actions
# Clip the actions to avoid out of bound error
if isinstance(self.action_space, gym.spaces.Box):
clipped_actions = np.clip(actions, self.action_space.low, self.action_space.high)
new_obs, rewards, dones, infos = env.step(clipped_actions)
self.num_timesteps += env.num_envs
# Give access to local variables
callback.update_locals(locals())
if callback.on_step() is False:
return False
self._update_info_buffer(infos)
n_steps += 1
if isinstance(self.action_space, gym.spaces.Discrete):
# Reshape in case of discrete action
actions = actions.reshape(-1, 1)
# Handle timeout by bootstraping with value function
# see GitHub issue #633
for idx, done_ in enumerate(dones):
if (
done_
and infos[idx].get("terminal_observation") is not None
and infos[idx].get("TimeLimit.truncated", False)
):
terminal_obs = self.policy.obs_to_tensor(infos[idx]["terminal_observation"])[0]
with th.no_grad():
terminal_lstm_state = (
lstm_states.vf[0][:, idx : idx + 1, :],
lstm_states.vf[1][:, idx : idx + 1, :],
)
# terminal_lstm_state = None
episode_starts = th.tensor([False]).float().to(self.device)
terminal_value = self.policy.predict_values(terminal_obs, terminal_lstm_state, episode_starts)[0]
rewards[idx] += self.gamma * terminal_value
rollout_buffer.add(
self._last_obs,
actions,
rewards,
self._last_episode_starts,
values,
log_probs,
lstm_states=self._last_lstm_states,
)
self._last_obs = new_obs
self._last_episode_starts = dones
self._last_lstm_states = lstm_states
with th.no_grad():
# Compute value for the last timestep
episode_starts = th.tensor(dones).float().to(self.device)
values = self.policy.predict_values(obs_as_tensor(new_obs, self.device), lstm_states.vf, episode_starts)
rollout_buffer.compute_returns_and_advantage(last_values=values, dones=dones)
callback.on_rollout_end()
return True
def train(self) -> None:
"""
Update policy using the currently gathered rollout buffer.
"""
# Switch to train mode (this affects batch norm / dropout)
self.policy.set_training_mode(True)
# Update optimizer learning rate
self._update_learning_rate(self.policy.optimizer)
# Compute current clip range
clip_range = self.clip_range(self._current_progress_remaining)
# Optional: clip range for the value function
if self.clip_range_vf is not None:
clip_range_vf = self.clip_range_vf(self._current_progress_remaining)
entropy_losses = []
pg_losses, value_losses = [], []
clip_fractions = []
language_losses=[]
continue_training = True
# self.policy.features_extractor.debug = True
# train for n_epochs epochs
for epoch in range(self.n_epochs):
approx_kl_divs = []
# Do a complete pass on the rollout buffer
for rollout_data in self.rollout_buffer.get(self.batch_size):
actions = rollout_data.actions
if isinstance(self.action_space, spaces.Discrete):
# Convert discrete action from float to long
actions = rollout_data.actions.long().flatten()
# Re-sample the noise matrix because the log_std has changed
if self.use_sde:
self.policy.reset_noise(self.batch_size)
values, log_prob, entropy,language_pred = self.policy.evaluate_actions(
rollout_data.observations,
actions,
rollout_data.lstm_states,
rollout_data.episode_starts,
)
true_language=rollout_data.observations[:,:self.auxdim]
language_loss= F.mse_loss(true_language,language_pred)
language_losses.append(language_loss.item())
values = values.flatten()
# Normalize advantage
advantages = rollout_data.advantages
advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
# ratio between old and new policy, should be one at the first iteration
ratio = th.exp(log_prob - rollout_data.old_log_prob)
# clipped surrogate loss
policy_loss_1 = advantages * ratio
policy_loss_2 = advantages * th.clamp(ratio, 1 - clip_range, 1 + clip_range)
policy_loss = -th.min(policy_loss_1, policy_loss_2).mean()
# Logging
pg_losses.append(policy_loss.item())
clip_fraction = th.mean((th.abs(ratio - 1) > clip_range).float()).item()
clip_fractions.append(clip_fraction)
if self.clip_range_vf is None:
# No clipping
values_pred = values
else:
# Clip the different between old and new value
# NOTE: this depends on the reward scaling
values_pred = rollout_data.old_values + th.clamp(
values - rollout_data.old_values, -clip_range_vf, clip_range_vf
)
# Value loss using the TD(gae_lambda) target
value_loss = F.mse_loss(rollout_data.returns, values_pred)
value_losses.append(value_loss.item())
# Entropy loss favor exploration
if entropy is None:
# Approximate entropy when no analytical form
entropy_loss = -th.mean(-log_prob)
else:
entropy_loss = -th.mean(entropy)
entropy_losses.append(entropy_loss.item())
loss = policy_loss + self.ent_coef * entropy_loss + self.vf_coef * value_loss + self.aux_coef * language_loss
# Calculate approximate form of reverse KL Divergence for early stopping
# see issue #417: https://github.com/DLR-RM/stable-baselines3/issues/417
# and discussion in PR #419: https://github.com/DLR-RM/stable-baselines3/pull/419
# and Schulman blog: http://joschu.net/blog/kl-approx.html
with th.no_grad():
log_ratio = log_prob - rollout_data.old_log_prob
approx_kl_div = th.mean((th.exp(log_ratio) - 1) - log_ratio).cpu().numpy()
approx_kl_divs.append(approx_kl_div)
if self.target_kl is not None and approx_kl_div > 1.5 * self.target_kl:
continue_training = False
if self.verbose >= 1:
print(f"Early stopping at step {epoch} due to reaching max kl: {approx_kl_div:.2f}")
break
# Optimization step
self.policy.optimizer.zero_grad()
loss.backward()
# Clip grad norm
th.nn.utils.clip_grad_norm_(self.policy.parameters(), self.max_grad_norm)
self.policy.optimizer.step()
if not continue_training:
break
self._n_updates += self.n_epochs
explained_var = explained_variance(self.rollout_buffer.values.flatten(), self.rollout_buffer.returns.flatten())
# Logs
self.logger.record("train/entropy_loss", np.mean(entropy_losses))
self.logger.record("train/policy_gradient_loss", np.mean(pg_losses))
self.logger.record("train/language_loss", np.mean(language_losses))
self.logger.record("train/value_loss", np.mean(value_losses))
self.logger.record("train/approx_kl", np.mean(approx_kl_divs))
self.logger.record("train/clip_fraction", np.mean(clip_fractions))
self.logger.record("train/loss", loss.item())
self.logger.record("train/explained_variance", explained_var)
if hasattr(self.policy, "log_std"):
self.logger.record("train/std", th.exp(self.policy.log_std).mean().item())
self.logger.record("train/n_updates", self._n_updates, exclude="tensorboard")
self.logger.record("train/clip_range", clip_range)
if self.clip_range_vf is not None:
self.logger.record("train/clip_range_vf", clip_range_vf)
def learn(
self,
total_timesteps: int,
callback: MaybeCallback = None,
log_interval: int = 1,
eval_env: Optional[GymEnv] = None,
eval_freq: int = -1,
n_eval_episodes: int = 5,
tb_log_name: str = "RecurrentPPOLanguage",
eval_log_path: Optional[str] = None,
reset_num_timesteps: bool = True,
) -> "RecurrentPPOLanguage":
iteration = 0
total_timesteps, callback = self._setup_learn(
total_timesteps, eval_env, callback, eval_freq, n_eval_episodes, eval_log_path, reset_num_timesteps, tb_log_name
)
callback.on_training_start(locals(), globals())
while self.num_timesteps < total_timesteps:
continue_training = self.collect_rollouts(self.env, callback, self.rollout_buffer, n_rollout_steps=self.n_steps)
if continue_training is False:
break
iteration += 1
self._update_current_progress_remaining(self.num_timesteps, total_timesteps)
# Display training infos
if log_interval is not None and iteration % log_interval == 0:
fps = int((self.num_timesteps - self._num_timesteps_at_start) / (time.time() - self.start_time))
self.logger.record("time/iterations", iteration, exclude="tensorboard")
if len(self.ep_info_buffer) > 0 and len(self.ep_info_buffer[0]) > 0:
self.logger.record("rollout/ep_rew_mean", safe_mean([ep_info["r"] for ep_info in self.ep_info_buffer]))
self.logger.record("rollout/ep_len_mean", safe_mean([ep_info["l"] for ep_info in self.ep_info_buffer]))
self.logger.record("time/fps", fps)
self.logger.record("time/time_elapsed", int(time.time() - self.start_time), exclude="tensorboard")
self.logger.record("time/total_timesteps", self.num_timesteps, exclude="tensorboard")
self.logger.dump(step=self.num_timesteps)
self.train()
callback.on_training_end()
return self