forked from nnzhan/Graph-WaveNet
-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathexp_results.py
38 lines (31 loc) · 1.13 KB
/
exp_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
"""Utilities for comparing metrics saved by train.py"""
import pandas as pd
import os
from glob import glob
import matplotlib.pyplot as plt
def summary(d):
try:
tr_val = pd.read_csv(f'{d}/metrics.csv', index_col=0)
tr_ser = tr_val.loc[tr_val.valid_loss.idxmin()]
tr_ser['best_epoch'] = tr_val.valid_loss.idxmin()
tr_ser['min_train_loss'] = tr_val.train_loss.min()
except FileNotFoundError:
tr_ser = pd.Series()
try:
tmet = pd.read_csv(f'{d}/test_metrics.csv', index_col=0)
tmean = tmet.add_prefix('test_').mean()
except FileNotFoundError:
tmean = pd.Series()
tab = pd.concat([tr_ser, tmean]).round(3)
return tab
def loss_curve(d):
if 'logs' not in d: d = f'logs/{d}'
tr_val = pd.read_csv(f'{d}/metrics.csv', index_col=0)
return tr_val[['train_loss', 'valid_loss']]
def plot_loss_curve(log_dir):
d = loss_curve(log_dir)
ax = d.plot()
plt.axhline(d.valid_loss.min())
print(d.valid_loss.idxmin())
def make_results_table():
return pd.DataFrame({os.path.basename(c): summary(c) for c in glob('logs/*')}).T.sort_values('valid_loss')