-
Notifications
You must be signed in to change notification settings - Fork 114
/
Copy pathtest_train_distilled_image.py
143 lines (117 loc) · 5.24 KB
/
test_train_distilled_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import contextlib
import functools
import inspect
import pprint
import unittest
import warnings
import numpy as np
import torch
import networks
from base_options import options
from train_distilled_image import Trainer
def unittest_verbosity():
"""Return the verbosity setting of the currently running unittest
program, or 0 if none is running.
"""
frame = inspect.currentframe()
while frame:
self = frame.f_locals.get('self')
if isinstance(self, unittest.TestProgram):
return self.verbosity
frame = frame.f_back
return 0
def suppress_wranings(fn):
@functools.wraps(fn)
def wrapped(*args, **kwargs):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
return fn(*args, **kwargs)
return wrapped
def format_intlist(intlist):
return ", ".join("{:>2d}".format(x) for x in intlist)
class TestDistilledImageTrainer(unittest.TestCase):
def __init__(self, methodName):
super().__init__(methodName)
@staticmethod
def _test_params_invariance(self, state):
models = networks.get_networks(state, 1)
trainer = Trainer(state, models)
model = trainer.models[0]
ref_w = model.get_param(clone=True)
rdata, rlabel = next(iter(state.train_loader))
rdata = rdata.to(state.device, non_blocking=True)
rlabel = rlabel.to(state.device, non_blocking=True)
model.train()
steps = trainer.get_steps()
l, saved = trainer.forward(model, rdata, rlabel, steps)
self.assertTrue(torch.equal(ref_w, model.get_param()))
trainer.backward(model, rdata, rlabel, steps, saved)
self.assertTrue(torch.equal(ref_w, model.get_param()))
def test_params_invariance(self):
state = options.get_dummy_state(dataset='Cifar10', arch='AlexCifarNet',
distill_steps=10, distill_epochs=2)
self._test_params_invariance(self, state)
state = options.get_dummy_state(dataset='PASCAL_VOC', arch='AlexNet',
distill_steps=2, distill_epochs=2)
self._test_params_invariance(self, state)
@staticmethod
def _test_backward(self, state, eps=2e-8, atol=1e-5, rtol=1e-3, max_num_per_param=5):
@contextlib.contextmanager
def double_prec():
saved_dtype = torch.get_default_dtype()
torch.set_default_dtype(torch.double)
yield
torch.set_default_dtype(saved_dtype)
with double_prec():
models = [m.to(torch.double) for m in networks.get_networks(state, 1)]
trainer = Trainer(state, models)
model = trainer.models[0]
rdata, rlabel = next(iter(state.train_loader))
rdata = rdata.to(state.device, torch.double, non_blocking=True)
rlabel = rlabel.to(state.device, non_blocking=True)
steps = trainer.get_steps()
l, saved = trainer.forward(model, rdata, rlabel, steps)
grad_info = trainer.backward(model, rdata, rlabel, steps, saved)
trainer.accumulate_grad([grad_info])
with torch.no_grad():
for p_idx, p in enumerate(trainer.params):
pdata = p.data
N = p.numel()
for flat_i in np.random.choice(N, min(N, max_num_per_param), replace=False):
i = []
for s in reversed(p.size()):
i.insert(0, flat_i % s)
flat_i //= s
i = tuple(i)
ag = p.grad[i].item()
orig = pdata[i].item()
pdata[i] -= eps
steps = trainer.get_steps()
lm, _ = trainer.forward(model, rdata, rlabel, steps)
pdata[i] += eps * 2
steps = trainer.get_steps()
lp, _ = trainer.forward(model, rdata, rlabel, steps)
ng = (lp - lm).item() / (2 * eps)
pdata[i] = orig
rel_err = abs(ag - ng) / (atol + rtol * abs(ng))
info_msg = "testing param {} with shape [{}] at ({}):\trel_err={:.4f}\t" \
"analytical={:+.6f}\tnumerical={:+.6f}".format(
p_idx, format_intlist(p.size()),
format_intlist(i), rel_err, ag, ng)
if unittest_verbosity() > 0:
print(info_msg)
self.assertTrue(rel_err <= 1, "gradcheck failed when " + info_msg)
@suppress_wranings
def test_backward(self):
for ds, arch in (('MNIST', 'LeNet'), ('Cifar10', 'AlexCifarNet')):
args = dict(
dataset=ds, arch=arch,
distill_steps=4, distill_epochs=2, distill_lr=0.02
)
with self.subTest(**args):
if unittest_verbosity() > 0:
print("\nRunning subtest: \n{}".format(pprint.pformat(args)))
state = options.get_dummy_state(**args)
self._test_backward(self, state)
if __name__ == "__main__":
unittest.main()