-
Notifications
You must be signed in to change notification settings - Fork 152
/
adequate.tex
2990 lines (2700 loc) · 106 KB
/
adequate.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Adequate Modules}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
For any scheme $X$ the category $\QCoh(\mathcal{O}_X)$
of quasi-coherent modules is abelian and a weak Serre subcategory
of the abelian category of all $\mathcal{O}_X$-modules. The same
thing works for the category of quasi-coherent modules on
an algebraic space $X$ viewed as a subcategory of the category
of all $\mathcal{O}_X$-modules on the small \'etale site of $X$.
Moreover, for a quasi-compact and quasi-separated morphism
$f : X \to Y$ the pushforward $f_*$ and higher direct images
preserve quasi-coherence.
\medskip\noindent
Next, let $X$ be a scheme and let $\mathcal{O}$ be the structure
sheaf on one of the big sites of $X$, say, the big fppf site.
The category of quasi-coherent $\mathcal{O}$-modules is abelian
(in fact it is equivalent to the category of usual quasi-coherent
$\mathcal{O}_X$-modules on the scheme $X$ we mentioned above)
but its imbedding into $\textit{Mod}(\mathcal{O})$ is not exact.
An example is the map of quasi-coherent modules
$$
\mathcal{O}_{\mathbf{A}^1_k}
\longrightarrow
\mathcal{O}_{\mathbf{A}^1_k}
$$
on $\mathbf{A}^1_k = \Spec(k[x])$ given by multiplication by $x$.
In the abelian category of quasi-coherent sheaves this map is injective,
whereas in the abelian category of all $\mathcal{O}$-modules on the
big site of $\mathbf{A}^1_k$ this map has a nontrivial kernel as we
see by evaluating on sections over $\Spec(k[x]/(x)) = \Spec(k)$.
Moreover, for a quasi-compact and quasi-separated morphism
$f : X \to Y$ the functor $f_{big, *}$ does not preserve quasi-coherence.
\medskip\noindent
In this chapter we introduce the category of what we will call
adequate modules, closely related to quasi-coherent modules, which
``fixes'' the two problems mentioned above. Another solution,
which we will implement when we talk about quasi-coherent modules
on algebraic stacks, is to consider $\mathcal{O}$-modules which
are locally quasi-coherent and satisfy the flat base change property.
See Cohomology of Stacks, Section
\ref{stacks-cohomology-section-loc-qcoh-flat-base-change},
Cohomology of Stacks, Remark
\ref{stacks-cohomology-remark-bousfield-colocalization}, and
Derived Categories of Stacks, Section
\ref{stacks-perfect-section-derived}.
\section{Conventions}
\label{section-conventions}
\noindent
In this chapter we fix
$\tau \in \{Zar, \etale, smooth, syntomic, fppf\}$
and we fix a big $\tau$-site $\Sch_\tau$ as in
Topologies, Section \ref{topologies-section-procedure}.
All schemes will be objects of $\Sch_\tau$.
In particular, given a scheme $S$ we obtain sites
$(\textit{Aff}/S)_\tau \subset (\Sch/S)_\tau$.
The structure sheaf $\mathcal{O}$ on these sites is defined by
the rule $\mathcal{O}(T) = \Gamma(T, \mathcal{O}_T)$.
\medskip\noindent
All rings $A$ will be such that $\Spec(A)$ is (isomorphic to) an
object of $\Sch_\tau$. Given a ring $A$ we denote
$\textit{Alg}_A$ the category of $A$-algebras whose objects are the
$A$-algebras $B$ of the form $B = \Gamma(U, \mathcal{O}_U)$
where $S$ is an affine object of $\Sch_\tau$. Thus given an
affine scheme $S = \Spec(A)$ the functor
$$
(\textit{Aff}/S)_\tau \longrightarrow \textit{Alg}_A,
\quad
U \longmapsto \mathcal{O}(U)
$$
is an equivalence.
\section{Adequate functors}
\label{section-quasi-coherent}
\noindent
In this section we discuss a topic closely related to
direct images of quasi-coherent sheaves. Most of this material
was taken from the paper \cite{Jaffe}.
\begin{definition}
\label{definition-module-valued-functor}
Let $A$ be a ring. A {\it module-valued functor} is a functor
$F : \textit{Alg}_A \to \textit{Ab}$ such that
\begin{enumerate}
\item for every object $B$ of $\textit{Alg}_A$ the group
$F(B)$ is endowed with the structure of a $B$-module, and
\item for any morphism $B \to B'$ of $\textit{Alg}_A$ the map
$F(B) \to F(B')$ is $B$-linear.
\end{enumerate}
A {\it morphism of module-valued functors} is a transformation of
functors $\varphi : F \to G$ such that $F(B) \to G(B)$ is $B$-linear
for all $B \in \Ob(\textit{Alg}_A)$.
\end{definition}
\noindent
Let $S = \Spec(A)$ be an affine scheme.
The category of module-valued functors on $\textit{Alg}_A$ is
equivalent to the category
$\textit{PMod}((\textit{Aff}/S)_\tau, \mathcal{O})$
of presheaves of $\mathcal{O}$-modules. The equivalence is given
by the rule which assigns to the module-valued functor $F$ the
presheaf $\mathcal{F}$ defined by the rule
$\mathcal{F}(U) = F(\mathcal{O}(U))$.
This is clear from the equivalence
$(\textit{Aff}/S)_\tau \to \textit{Alg}_A$, $U \mapsto \mathcal{O}(U)$
given in Section \ref{section-conventions}.
The quasi-inverse sets $F(B) = \mathcal{F}(\Spec(B))$.
\medskip\noindent
An important special case of a module-valued functor comes about as follows.
Let $M$ be an $A$-module. Then we will denote $\underline{M}$ the
module-valued functor $B \mapsto M \otimes_A B$ (with obvious $B$-module
structure). Note that if $M \to N$ is a map of $A$-modules then there is an
associated morphism $\underline{M} \to \underline{N}$ of module-valued
functors. Conversely, any morphism of module-valued functors
$\underline{M} \to \underline{N}$ comes from an $A$-module map $M \to N$
as the reader can see by evaluating on $B = A$. In other words
$\text{Mod}_A$ is a full
subcategory of the category of module-valued functors on $\textit{Alg}_A$.
\medskip\noindent
Given and $A$-module map $\varphi : M \to N$ then
$\Coker(\underline{M} \to \underline{N}) =
\underline{Q}$ where $Q = \Coker(M \to N)$ because $\otimes$
is right exact. But this isn't the case
for the kernel in general: for example an injective map of
$A$-modules need not be injective after base change. Thus the following
definition makes sense.
\begin{definition}
\label{definition-adequate-functor}
Let $A$ be a ring. A module-valued functor $F$ on $\textit{Alg}_A$ is
called
\begin{enumerate}
\item {\it adequate} if there exists a
map of $A$-modules $M \to N$ such that $F$ is isomorphic to
$\Ker(\underline{M} \to \underline{N})$.
\item {\it linearly adequate} if $F$ is isomorphic to the
kernel of a map $\underline{A^{\oplus n}} \to \underline{A^{\oplus m}}$.
\end{enumerate}
\end{definition}
\noindent
Note that $F$ is adequate if and only if there exists an
exact sequence $0 \to F \to \underline{M} \to \underline{N}$ and
$F$ is linearly adequate if and only if there exists an exact sequence
$0 \to F \to \underline{A^{\oplus n}} \to \underline{A^{\oplus m}}$.
\medskip\noindent
Let $A$ be a ring. In this section we will show the category of adequate
functors on $\textit{Alg}_A$ is abelian
(Lemmas \ref{lemma-cokernel-adequate} and \ref{lemma-kernel-adequate})
and has a set of generators
(Lemma \ref{lemma-adequate-surjection-from-linear}).
We will also see that it is a weak Serre subcategory of the category
of all module-valued functors on $\textit{Alg}_A$
(Lemma \ref{lemma-extension-adequate})
and that it has arbitrary colimits
(Lemma \ref{lemma-colimit-adequate}).
\begin{lemma}
\label{lemma-adequate-finite-presentation}
Let $A$ be a ring.
Let $F$ be an adequate functor on $\textit{Alg}_A$.
If $B = \colim B_i$ is a filtered
colimit of $A$-algebras, then $F(B) = \colim F(B_i)$.
\end{lemma}
\begin{proof}
This holds because for any $A$-module $M$ we have
$M \otimes_A B = \colim M \otimes_A B_i$ (see
Algebra, Lemma \ref{algebra-lemma-tensor-products-commute-with-limits})
and because filtered colimits commute with exact sequences, see
Algebra, Lemma \ref{algebra-lemma-directed-colimit-exact}.
\end{proof}
\begin{remark}
\label{remark-settheoretic}
Consider the category $\textit{Alg}_{fp, A}$ whose objects are $A$-algebras
$B$ of the form $B = A[x_1, \ldots, x_n]/(f_1, \ldots, f_m)$ and whose
morphisms are $A$-algebra maps. Every $A$-algebra $B$ is a filtered colimit
of finitely presented $A$-algebra, i.e., a filtered colimit of objects of
$\textit{Alg}_{fp, A}$. By
Lemma \ref{lemma-adequate-finite-presentation}
we conclude every adequate functor $F$ is determined by its restriction to
$\textit{Alg}_{fp, A}$. For some questions we can therefore restrict to
functors on $\textit{Alg}_{fp, A}$. For example, the category of adequate
functors does not depend on the choice of the big $\tau$-site
chosen in
Section \ref{section-conventions}.
\end{remark}
\begin{lemma}
\label{lemma-adequate-flat}
Let $A$ be a ring.
Let $F$ be an adequate functor on $\textit{Alg}_A$.
If $B \to B'$ is flat, then $F(B) \otimes_B B' \to F(B')$
is an isomorphism.
\end{lemma}
\begin{proof}
Choose an exact sequence $0 \to F \to \underline{M} \to \underline{N}$.
This gives the diagram
$$
\xymatrix{
0 \ar[r] & F(B) \otimes_B B' \ar[r] \ar[d] &
(M \otimes_A B)\otimes_B B' \ar[r] \ar[d] &
(N \otimes_A B)\otimes_B B' \ar[d] \\
0 \ar[r] & F(B') \ar[r] &
M \otimes_A B' \ar[r] &
N \otimes_A B'
}
$$
where the rows are exact (the top one because $B \to B'$ is flat).
Since the right two vertical arrows are isomorphisms, so is the
left one.
\end{proof}
\begin{lemma}
\label{lemma-adequate-surjection-from-linear}
Let $A$ be a ring.
Let $F$ be an adequate functor on $\textit{Alg}_A$. Then there exists a
surjection $L \to F$ with $L$ a direct sum of linearly adequate functors.
\end{lemma}
\begin{proof}
Choose an exact sequence $0 \to F \to \underline{M} \to \underline{N}$
where $\underline{M} \to \underline{N}$ is given by
$\varphi : M \to N$. By
Lemma \ref{lemma-adequate-finite-presentation}
it suffices to construct $L \to F$ such that $L(B) \to F(B)$ is surjective
for every finitely presented $A$-algebra $B$. Hence it suffices to construct,
given a finitely presented $A$-algebra $B$ and an element $\xi \in F(B)$
a map $L \to F$ with $L$ linearly adequate such that $\xi$ is in the image
of $L(B) \to F(B)$.
(Because there is a set worth of such pairs $(B, \xi)$ up to isomorphism.)
\medskip\noindent
To do this write $\sum_{i = 1, \ldots, n} m_i \otimes b_i$ the image of
$\xi$ in $\underline{M}(B) = M \otimes_A B$. We know that
$\sum \varphi(m_i) \otimes b_i = 0$ in $N \otimes_A B$.
As $N$ is a filtered colimit of finitely presented $A$-modules, we can
find a finitely presented $A$-module $N'$, a commutative diagram
of $A$-modules
$$
\xymatrix{
A^{\oplus n} \ar[r] \ar[d]_{m_1, \ldots, m_n} & N' \ar[d] \\
M \ar[r] & N
}
$$
such that $(b_1, \ldots, b_n)$ maps to zero in $N' \otimes_A B$.
Choose a presentation $A^{\oplus l} \to A^{\oplus k} \to N' \to 0$.
Choose a lift $A^{\oplus n} \to A^{\oplus k}$ of the map
$A^{\oplus n} \to N'$ of the diagram. Then we see that there exist
$(c_1, \ldots, c_l) \in B^{\oplus l}$ such that
$(b_1, \ldots, b_n, c_1, \ldots, c_l)$ maps to zero in $B^{\oplus k}$
under the map $B^{\oplus n} \oplus B^{\oplus l} \to B^{\oplus k}$.
Consider the commutative diagram
$$
\xymatrix{
A^{\oplus n} \oplus A^{\oplus l} \ar[r] \ar[d] & A^{\oplus k} \ar[d] \\
M \ar[r] & N
}
$$
where the left vertical arrow is zero on the summand $A^{\oplus l}$.
Then we see that $L$ equal to the kernel of $\underline{A^{\oplus n + l}}
\to \underline{A^{\oplus k}}$ works because the element
$(b_1, \ldots, b_n, c_1, \ldots, c_l) \in L(B)$ maps to $\xi$.
\end{proof}
\noindent
Consider a graded $A$-algebra $B = \bigoplus_{d \geq 0} B_d$. Then there are
two $A$-algebra maps $p, a : B \to B[t, t^{-1}]$, namely $p : b \mapsto b$ and
$a : b \mapsto t^{\deg(b)} b$ where $b$ is homogeneous. If $F$ is a
module-valued functor on $\textit{Alg}_A$, then we define
\begin{equation}
\label{equation-weight-k}
F(B)^{(k)} = \{\xi \in F(B) \mid t^k F(p)(\xi) = F(a)(\xi)\}.
\end{equation}
For functors which behave well with respect to flat ring extensions
this gives a direct sum decomposition. This amounts to the fact that
representations of $\mathbf{G}_m$ are completely reducible.
\begin{lemma}
\label{lemma-flat-functor-split}
Let $A$ be a ring.
Let $F$ be a module-valued functor on $\textit{Alg}_A$.
Assume that for $B \to B'$ flat the map
$F(B) \otimes_B B' \to F(B')$ is an isomorphism.
Let $B$ be a graded $A$-algebra. Then
\begin{enumerate}
\item $F(B) = \bigoplus_{k \in \mathbf{Z}} F(B)^{(k)}$, and
\item the map $B \to B_0 \to B$ induces map $F(B) \to F(B)$
whose image is contained in $F(B)^{(0)}$.
\end{enumerate}
\end{lemma}
\begin{proof}
Let $x \in F(B)$. The map $p : B \to B[t, t^{-1}]$ is free
hence we know that
$$
F(B[t, t^{-1}]) =
\bigoplus\nolimits_{k \in \mathbf{Z}} F(p)(F(B)) \cdot t^k =
\bigoplus\nolimits_{k \in \mathbf{Z}} F(B) \cdot t^k
$$
as indicated we drop the $F(p)$ in the rest of the proof.
Write $F(a)(x) = \sum t^k x_k$ for some $x_k \in F(B)$.
Denote $\epsilon : B[t, t^{-1}] \to B$
the $B$-algebra map $t \mapsto 1$. Note that the compositions
$\epsilon \circ p, \epsilon \circ a : B \to B[t, t^{-1}] \to B$ are
the identity. Hence we see that
$$
x = F(\epsilon)(F(a)(x)) = F(\epsilon)(\sum t^k x_k) = \sum x_k.
$$
On the other hand, we claim that $x_k \in F(B)^{(k)}$. Namely, consider
the commutative diagram
$$
\xymatrix{
B \ar[r]_a \ar[d]_{a'} &
B[t, t^{-1}] \ar[d]^f \\
B[s, s^{-1}] \ar[r]^-g &
B[t, s, t^{-1}, s^{-1}]
}
$$
where $a'(b) = s^{\deg(b)}b$, $f(b) = b$, $f(t) = st$ and
$g(b) = t^{\deg(b)}b$ and $g(s) = s$. Then
$$
F(g)(F(a'))(x) = F(g)(\sum s^k x_k) =
\sum s^k F(a)(x_k)
$$
and going the other way we see
$$
F(f)(F(a))(x) = F(f)(\sum t^k x_k) = \sum (st)^k x_k.
$$
Since $B \to B[s, t, s^{-1}, t^{-1}]$ is free we see that
$F(B[t, s, t^{-1}, s^{-1}]) =
\bigoplus_{k, l \in \mathbf{Z}} F(B) \cdot t^ks^l$ and
comparing coefficients in the expressions above we find
$F(a)(x_k) = t^k x_k$ as desired.
\medskip\noindent
Finally, the image of $F(B_0) \to F(B)$ is contained in $F(B)^{(0)}$
because $B_0 \to B \xrightarrow{a} B[t, t^{-1}]$ is equal to
$B_0 \to B \xrightarrow{p} B[t, t^{-1}]$.
\end{proof}
\noindent
As a particular case of
Lemma \ref{lemma-flat-functor-split}
note that
$$
\underline{M}(B)^{(k)} = M \otimes_A B_k
$$
where $B_k$ is the degree $k$ part of the graded $A$-algebra $B$.
\begin{lemma}
\label{lemma-lift-map}
Let $A$ be a ring. Given a solid diagram
$$
\xymatrix{
0 \ar[r] &
L \ar[d]_\varphi \ar[r] &
\underline{A^{\oplus n}} \ar[r] \ar@{..>}[ld] &
\underline{A^{\oplus m}} \\
& \underline{M}
}
$$
of module-valued functors on $\textit{Alg}_A$
with exact row there exists a dotted arrow making the diagram commute.
\end{lemma}
\begin{proof}
Suppose that the map $A^{\oplus n} \to A^{\oplus m}$ is given by the
$m \times n$-matrix $(a_{ij})$. Consider the ring
$B = A[x_1, \ldots, x_n]/(\sum a_{ij}x_j)$. The element
$(x_1, \ldots, x_n) \in \underline{A^{\oplus n}}(B)$ maps to zero in
$\underline{A^{\oplus m}}(B)$ hence is the image of a unique element
$\xi \in L(B)$. Note that $\xi$ has the following universal property:
for any $A$-algebra $C$ and any $\xi' \in L(C)$ there exists an $A$-algebra
map $B \to C$ such that $\xi$ maps to $\xi'$ via the map $L(B) \to L(C)$.
\medskip\noindent
Note that $B$ is a graded $A$-algebra, hence we can use
Lemmas \ref{lemma-flat-functor-split} and \ref{lemma-adequate-flat}
to decompose the values of our functors on $B$ into graded pieces.
Note that $\xi \in L(B)^{(1)}$ as $(x_1, \ldots, x_n)$ is an element
of degree one in $\underline{A^{\oplus n}}(B)$. Hence we see that
$\varphi(\xi) \in \underline{M}(B)^{(1)} = M \otimes_A B_1$.
Since $B_1$ is generated by $x_1, \ldots, x_n$ as an $A$-module we
can write $\varphi(\xi) = \sum m_i \otimes x_i$. Consider the map
$A^{\oplus n} \to M$ which maps the $i$th basis vector to $m_i$.
By construction the associated map
$\underline{A^{\oplus n}} \to \underline{M}$
maps the element $\xi$ to $\varphi(\xi)$. It follows from the
universal property mentioned above that the diagram commutes.
\end{proof}
\begin{lemma}
\label{lemma-cokernel-into-module}
Let $A$ be a ring.
Let $\varphi : F \to \underline{M}$ be a map of module-valued functors
on $\textit{Alg}_A$ with $F$ adequate.
Then $\Coker(\varphi)$ is adequate.
\end{lemma}
\begin{proof}
By
Lemma \ref{lemma-adequate-surjection-from-linear}
we may assume that $F = \bigoplus L_i$ is a direct sum of linearly adequate
functors. Choose exact sequences
$0 \to L_i \to \underline{A^{\oplus n_i}} \to \underline{A^{\oplus m_i}}$.
For each $i$ choose a map $A^{\oplus n_i} \to M$ as in
Lemma \ref{lemma-lift-map}.
Consider the diagram
$$
\xymatrix{
0 \ar[r] &
\bigoplus L_i \ar[r] \ar[d] &
\bigoplus \underline{A^{\oplus n_i}} \ar[r] \ar[ld] &
\bigoplus \underline{A^{\oplus m_i}} \\
& \underline{M}
}
$$
Consider the $A$-modules
$$
Q =
\Coker(\bigoplus A^{\oplus n_i} \to M \oplus \bigoplus A^{\oplus m_i})
\quad\text{and}\quad
P = \Coker(\bigoplus A^{\oplus n_i} \to \bigoplus A^{\oplus m_i}).
$$
Then we see that $\Coker(\varphi)$ is isomorphic to the
kernel of $\underline{Q} \to \underline{P}$.
\end{proof}
\begin{lemma}
\label{lemma-cokernel-adequate}
\begin{slogan}
The cokernel of a map of adequate functors on the category of algebras
over a ring is adequate.
\end{slogan}
Let $A$ be a ring.
Let $\varphi : F \to G$ be a map of adequate functors on $\textit{Alg}_A$.
Then $\Coker(\varphi)$ is adequate.
\end{lemma}
\begin{proof}
Choose an injection $G \to \underline{M}$.
Then we have an injection $G/F \to \underline{M}/F$. By
Lemma \ref{lemma-cokernel-into-module}
we see that $\underline{M}/F$ is adequate, hence we can find an injection
$\underline{M}/F \to \underline{N}$.
Composing we obtain an injection $G/F \to \underline{N}$. By
Lemma \ref{lemma-cokernel-into-module}
the cokernel of the induced map $G \to \underline{N}$ is adequate
hence we can find an injection $\underline{N}/G \to \underline{K}$.
Then $0 \to G/F \to \underline{N} \to \underline{K}$ is exact and
we win.
\end{proof}
\begin{lemma}
\label{lemma-kernel-adequate}
Let $A$ be a ring.
Let $\varphi : F \to G$ be a map of adequate functors on $\textit{Alg}_A$.
Then $\Ker(\varphi)$ is adequate.
\end{lemma}
\begin{proof}
Choose an injection $F \to \underline{M}$ and an injection
$G \to \underline{N}$. Denote $F \to \underline{M \oplus N}$
the diagonal map so that
$$
\xymatrix{
F \ar[d] \ar[r] & G \ar[d] \\
\underline{M \oplus N} \ar[r] & \underline{N}
}
$$
commutes. By
Lemma \ref{lemma-cokernel-adequate}
we can find a module map $M \oplus N \to K$ such that
$F$ is the kernel of $\underline{M \oplus N} \to \underline{K}$.
Then $\Ker(\varphi)$ is the kernel of
$\underline{M \oplus N} \to \underline{K \oplus N}$.
\end{proof}
\begin{lemma}
\label{lemma-colimit-adequate}
Let $A$ be a ring.
An arbitrary direct sum of adequate functors on $\textit{Alg}_A$
is adequate. A colimit of adequate functors is adequate.
\end{lemma}
\begin{proof}
The statement on direct sums is immediate.
A general colimit can be written as a kernel of a map between
direct sums, see
Categories, Lemma \ref{categories-lemma-colimits-coproducts-coequalizers}.
Hence this follows from
Lemma \ref{lemma-kernel-adequate}.
\end{proof}
\begin{lemma}
\label{lemma-flat-linear-functor}
Let $A$ be a ring.
Let $F, G$ be module-valued functors on $\textit{Alg}_A$.
Let $\varphi : F \to G$ be a transformation of functors. Assume
\begin{enumerate}
\item $\varphi$ is additive,
\item for every $A$-algebra $B$ and $\xi \in F(B)$ and unit
$u \in B^*$ we have $\varphi(u\xi) = u\varphi(\xi)$ in $G(B)$, and
\item for any flat ring map $B \to B'$ we have
$G(B) \otimes_B B' = G(B')$.
\end{enumerate}
Then $\varphi$ is a morphism of module-valued functors.
\end{lemma}
\begin{proof}
Let $B$ be an $A$-algebra, $\xi \in F(B)$, and $b \in B$. We have to show
that $\varphi(b \xi) = b \varphi(\xi)$. Consider the ring map
$$
B \to B' = B[x, y, x^{-1}, y^{-1}]/(x + y - b).
$$
This ring map is faithfully flat, hence $G(B) \subset G(B')$. On the
other hand
$$
\varphi(b\xi) = \varphi((x + y)\xi) =
\varphi(x\xi) + \varphi(y\xi) = x\varphi(\xi) + y\varphi(\xi)
= (x + y)\varphi(\xi) = b\varphi(\xi)
$$
because $x, y$ are units in $B'$. Hence we win.
\end{proof}
\begin{lemma}
\label{lemma-extension-adequate-key}
Let $A$ be a ring.
Let $0 \to \underline{M} \to G \to L \to 0$ be a short exact sequence
of module-valued functors on $\textit{Alg}_A$ with $L$ linearly adequate.
Then $G$ is adequate.
\end{lemma}
\begin{proof}
We first point out that for any flat $A$-algebra map
$B \to B'$ the map $G(B) \otimes_B B' \to G(B')$ is an isomorphism.
Namely, this holds for $\underline{M}$ and $L$, see
Lemma \ref{lemma-adequate-flat}
and hence follows for $G$ by the five lemma. In particular, by
Lemma \ref{lemma-flat-functor-split}
we see that $G(B) = \bigoplus_{k \in \mathbf{Z}} G(B)^{(k)}$
for any graded $A$-algebra $B$.
\medskip\noindent
Choose an exact sequence
$0 \to L \to \underline{A^{\oplus n}} \to \underline{A^{\oplus m}}$.
Suppose that the map $A^{\oplus n} \to A^{\oplus m}$ is given by the
$m \times n$-matrix $(a_{ij})$. Consider the graded $A$-algebra
$B = A[x_1, \ldots, x_n]/(\sum a_{ij}x_j)$. The element
$(x_1, \ldots, x_n) \in \underline{A^{\oplus n}}(B)$ maps to zero in
$\underline{A^{\oplus m}}(B)$ hence is the image of a unique element
$\xi \in L(B)$. Observe that $\xi \in L(B)^{(1)}$. The map
$$
\Hom_A(B, C) \longrightarrow L(C), \quad
f \longmapsto L(f)(\xi)
$$
defines an isomorphism of functors. The reason is that $f$ is
determined by the images $c_i = f(x_i) \in C$ which have to
satisfy the relations $\sum a_{ij}c_j = 0$. And $L(C)$ is the
set of $n$-tuples $(c_1, \ldots, c_n)$ satisfying the relations
$\sum a_{ij} c_j = 0$.
\medskip\noindent
Since the value of each of the functors $\underline{M}$, $G$, $L$
on $B$ is a direct sum of its weight spaces (by the lemma mentioned
above) exactness of $0 \to \underline{M} \to G \to L \to 0$ implies
the sequence $0 \to \underline{M}(B)^{(1)} \to G(B)^{(1)} \to L(B)^{(1)} \to 0$
is exact. Thus we may choose an element $\theta \in G(B)^{(1)}$ mapping
to $\xi$.
\medskip\noindent
Consider the graded $A$-algebra
$$
C = A[x_1, \ldots, x_n, y_1, \ldots, y_n]/
(\sum a_{ij}x_j, \sum a_{ij}y_j)
$$
There are three graded $A$-algebra homomorphisms $p_1, p_2, m : B \to C$
defined by the rules
$$
p_1(x_i) = x_i, \quad
p_1(x_i) = y_i, \quad
m(x_i) = x_i + y_i.
$$
We will show that the element
$$
\tau = G(m)(\theta) - G(p_1)(\theta) - G(p_2)(\theta) \in G(C)
$$
is zero. First, $\tau$ maps to zero in $L(C)$ by a direct calculation.
Hence $\tau$ is an element of $\underline{M}(C)$.
Moreover, since $m$, $p_1$, $p_2$ are graded algebra maps we see
that $\tau \in G(C)^{(1)}$ and since $\underline{M} \subset G$
we conclude
$$
\tau \in \underline{M}(C)^{(1)} = M \otimes_A C_1.
$$
We may write uniquely
$\tau = \underline{M}(p_1)(\tau_1) + \underline{M}(p_2)(\tau_2)$ with
$\tau_i \in M \otimes_A B_1 = \underline{M}(B)^{(1)}$ because
$C_1 = p_1(B_1) \oplus p_2(B_1)$.
Consider the ring map $q_1 : C \to B$ defined by $x_i \mapsto x_i$ and
$y_i \mapsto 0$. Then
$\underline{M}(q_1)(\tau) =
\underline{M}(q_1)(\underline{M}(p_1)(\tau_1) + \underline{M}(p_2)(\tau_2)) =
\tau_1$.
On the other hand, because
$q_1 \circ m = q_1 \circ p_1$ we see that
$G(q_1)(\tau) = - G(q_1 \circ p_2)(\tau)$. Since $q_1 \circ p_2$ factors as
$B \to A \to B$ we see that $G(q_1 \circ p_2)(\tau)$ is in
$G(B)^{(0)}$, see
Lemma \ref{lemma-flat-functor-split}.
Hence $\tau_1 = 0$ because it is in
$G(B)^{(0)} \cap \underline{M}(B)^{(1)} \subset
G(B)^{(0)} \cap G(B)^{(1)} = 0$.
Similarly $\tau_2 = 0$, whence $\tau = 0$.
\medskip\noindent
Since $\theta \in G(B)$ we obtain a transformation of functors
$$
\psi : L(-) = \Hom_A(B, - ) \longrightarrow G(-)
$$
by mapping $f : B \to C$ to $G(f)(\theta)$. Since $\theta$ is a lift of
$\xi$ the map $\psi$ is a right inverse of $G \to L$. In terms of
$\psi$ the statements proved above have the following meaning:
$\tau = 0$ means that $\psi$ is additive and
$\theta \in G(B)^{(1)}$ implies that for any $A$-algebra $D$ we have
$\psi(ul) = u\psi(l)$ in $G(D)$ for $l \in L(D)$ and $u \in D^*$ a unit.
This implies that $\psi$ is a morphism of module-valued functors, see
Lemma \ref{lemma-flat-linear-functor}.
Clearly this implies that $G \cong \underline{M} \oplus L$ and we win.
\end{proof}
\begin{remark}
\label{remark-linearly-adequate}
Let $A$ be a ring.
The proof of
Lemma \ref{lemma-extension-adequate-key}
shows that any extension $0 \to \underline{M} \to E \to L \to 0$
of module-valued functors on $\textit{Alg}_A$
with $L$ linearly adequate splits. It uses only the following properties
of the module-valued functor $F = \underline{M}$:
\begin{enumerate}
\item $F(B) \otimes_B B' \to F(B')$ is an isomorphism
for a flat ring map $B \to B'$, and
\item
$F(C)^{(1)} = F(p_1)(F(B)^{(1)}) \oplus F(p_2)(F(B)^{(1)})$
where $B = A[x_1, \ldots, x_n]/(\sum a_{ij}x_j)$ and
$C = A[x_1, \ldots, x_n, y_1, \ldots, y_n]/
(\sum a_{ij}x_j, \sum a_{ij}y_j)$.
\end{enumerate}
These two properties hold for any adequate functor $F$; details omitted.
Hence we see that $L$ is a projective object of the abelian category of
adequate functors.
\end{remark}
\begin{lemma}
\label{lemma-extension-adequate}
Let $A$ be a ring.
Let $0 \to F \to G \to H \to 0$ be a short exact sequence of
module-valued functors on $\textit{Alg}_A$.
If $F$ and $H$ are adequate, so is $G$.
\end{lemma}
\begin{proof}
Choose an exact sequence $0 \to F \to \underline{M} \to \underline{N}$.
If we can show that $(\underline{M} \oplus G)/F$ is adequate, then
$G$ is the kernel of the map of adequate functors
$(\underline{M} \oplus G)/F \to \underline{N}$, hence
adequate by
Lemma \ref{lemma-kernel-adequate}.
Thus we may assume $F = \underline{M}$.
\medskip\noindent
We can choose a surjection $L \to H$ where $L$ is a direct sum of
linearly adequate functors, see
Lemma \ref{lemma-adequate-surjection-from-linear}.
If we can show that the pullback $G \times_H L$ is adequate, then
$G$ is the cokernel of the map $\Ker(L \to H) \to G \times_H L$
hence adequate by
Lemma \ref{lemma-cokernel-adequate}.
Thus we may assume that $H = \bigoplus L_i$ is a direct sum of
linearly adequate functors. By
Lemma \ref{lemma-extension-adequate-key}
each of the pullbacks $G \times_H L_i$ is adequate. By
Lemma \ref{lemma-colimit-adequate}
we see that $\bigoplus G \times_H L_i$ is adequate.
Then $G$ is the cokernel of
$$
\bigoplus\nolimits_{i \not = i'} F \longrightarrow
\bigoplus G \times_H L_i
$$
where $\xi$ in the summand $(i, i')$ maps to
$(0, \ldots, 0, \xi, 0, \ldots, 0, -\xi, 0, \ldots, 0)$
with nonzero entries in the summands $i$ and $i'$.
Thus $G$ is adequate by
Lemma \ref{lemma-cokernel-adequate}.
\end{proof}
\begin{lemma}
\label{lemma-base-change-adequate}
Let $A \to A'$ be a ring map. If $F$ is an adequate functor on
$\textit{Alg}_A$, then its restriction $F'$ to
$\textit{Alg}_{A'}$ is adequate too.
\end{lemma}
\begin{proof}
Choose an exact sequence $0 \to F \to \underline{M} \to \underline{N}$.
Then $F'(B') = F(B') = \Ker(M \otimes_A B' \to N \otimes_A B')$.
Since $M \otimes_A B' = M \otimes_A A' \otimes_{A'} B'$ and similarly
for $N$ we see that $F'$ is the kernel of
$\underline{M \otimes_A A'} \to \underline{N \otimes_A A'}$.
\end{proof}
\begin{lemma}
\label{lemma-pushforward-adequate}
Let $A \to A'$ be a ring map. If $F'$ is an adequate functor on
$\textit{Alg}_{A'}$, then the module-valued functor
$F : B \mapsto F'(A' \otimes_A B)$ on $\textit{Alg}_A$ is adequate too.
\end{lemma}
\begin{proof}
Choose an exact sequence $0 \to F' \to \underline{M'} \to \underline{N'}$.
Then
\begin{align*}
F(B) & = F'(A' \otimes_A B) \\
& = \Ker(M' \otimes_{A'} (
A' \otimes_A B) \to N' \otimes_{A'} (A' \otimes_A B)) \\
& = \Ker(M' \otimes_A B \to N' \otimes_A B)
\end{align*}
Thus $F$ is the kernel of
$\underline{M} \to \underline{N}$
where $M = M'$ and $N = N'$ viewed as $A$-modules.
\end{proof}
\begin{lemma}
\label{lemma-adequate-product}
Let $A = A_1 \times \ldots \times A_n$ be a product of rings.
An adequate functor over $A$ is the same thing as a sequence
$F_1, \ldots, F_n$ of adequate functors $F_i$ over $A_i$.
\end{lemma}
\begin{proof}
This is true because an $A$-algebra $B$ is canonically a product
$B_1 \times \ldots \times B_n$ and the same thing holds for $A$-modules.
Setting $F(B) = \coprod F_i(B_i)$ gives the correspondence.
Details omitted.
\end{proof}
\begin{lemma}
\label{lemma-adequate-descent}
Let $A \to A'$ be a ring map and let $F$ be a module-valued functor on
$\textit{Alg}_A$ such that
\begin{enumerate}
\item the restriction $F'$ of $F$ to the category of $A'$-algebras is
adequate, and
\item for any $A$-algebra $B$ the sequence
$$
0 \to F(B) \to F(B \otimes_A A') \to F(B \otimes_A A' \otimes_A A')
$$
is exact.
\end{enumerate}
Then $F$ is adequate.
\end{lemma}
\begin{proof}
The functors $B \to F(B \otimes_A A')$ and
$B \mapsto F(B \otimes_A A' \otimes_A A')$ are adequate, see
Lemmas \ref{lemma-pushforward-adequate} and
\ref{lemma-base-change-adequate}.
Hence $F$ as a kernel of a map of adequate functors is adequate, see
Lemma \ref{lemma-kernel-adequate}.
\end{proof}
\section{Higher exts of adequate functors}
\label{section-higher-ext}
\noindent
Let $A$ be a ring. In
Lemma \ref{lemma-extension-adequate}
we have seen that any extension of adequate functors in the category
of module-valued functors on $\textit{Alg}_A$ is adequate. In this
section we show that the same remains true for higher ext groups.
\begin{lemma}
\label{lemma-adjoint}
Let $A$ be a ring.
For every module-valued functor $F$ on $\textit{Alg}_A$
there exists a morphism $Q(F) \to F$ of module-valued functors on
$\textit{Alg}_A$ such that (1) $Q(F)$ is adequate and (2) for every
adequate functor $G$ the map $\Hom(G, Q(F)) \to \Hom(G, F)$
is a bijection.
\end{lemma}
\begin{proof}
Choose a set $\{L_i\}_{i \in I}$ of linearly adequate functors such that
every linearly adequate functor is isomorphic to one of the $L_i$.
This is possible. Suppose that we can find $Q(F) \to F$ with (1) and
(2)' or every $i \in I$ the map $\Hom(L_i, Q(F)) \to \Hom(L_i, F)$
is a bijection. Then (2) holds. Namely, combining
Lemmas \ref{lemma-adequate-surjection-from-linear} and
\ref{lemma-kernel-adequate}
we see that every adequate functor $G$ sits in an exact sequence
$$
K \to L \to G \to 0
$$
with $K$ and $L$ direct sums of linearly adequate functors. Hence (2)'
implies that
$\Hom(L, Q(F)) \to \Hom(L, F)$
and
$\Hom(K, Q(F)) \to \Hom(K, F)$
are bijections, whence the same thing for $G$.
\medskip\noindent
Consider the category $\mathcal{I}$ whose objects are pairs
$(i, \varphi)$ where $i \in I$ and $\varphi : L_i \to F$ is a morphism.
A morphism $(i, \varphi) \to (i', \varphi')$ is a map
$\psi : L_i \to L_{i'}$ such that $\varphi' \circ \psi = \varphi$.
Set
$$
Q(F) = \colim_{(i, \varphi) \in \Ob(\mathcal{I})} L_i
$$
There is a natural map $Q(F) \to F$, by
Lemma \ref{lemma-colimit-adequate}
it is adequate, and by construction it has property (2)'.
\end{proof}
\begin{lemma}
\label{lemma-enough-injectives}
Let $A$ be a ring. Denote $\mathcal{P}$ the category of module-valued
functors on $\textit{Alg}_A$ and $\mathcal{A}$ the category of adequate
functors on $\textit{Alg}_A$. Denote $i : \mathcal{A} \to \mathcal{P}$
the inclusion functor. Denote $Q : \mathcal{P} \to \mathcal{A}$
the construction of Lemma \ref{lemma-adjoint}.
Then
\begin{enumerate}
\item $i$ is fully faithful, exact, and its image is a weak Serre subcategory,
\item $\mathcal{P}$ has enough injectives,
\item the functor $Q$ is a right adjoint to $i$ hence left exact,
\item $Q$ transforms injectives into injectives,
\item $\mathcal{A}$ has enough injectives.
\end{enumerate}
\end{lemma}
\begin{proof}
This lemma just collects some facts we have already seen so far.
Part (1) is clear from the definitions, the characterization of
weak Serre subcategories (see
Homology, Lemma \ref{homology-lemma-characterize-weak-serre-subcategory}),
and
Lemmas \ref{lemma-cokernel-adequate}, \ref{lemma-kernel-adequate},
and \ref{lemma-extension-adequate}.
Recall that $\mathcal{P}$ is equivalent to the category
$\textit{PMod}((\textit{Aff}/\Spec(A))_\tau, \mathcal{O})$.
Hence (2) by
Injectives, Proposition \ref{injectives-proposition-presheaves-modules}.
Part (3) follows from
Lemma \ref{lemma-adjoint}
and
Categories, Lemma \ref{categories-lemma-adjoint-exact}.
Parts (4) and (5) follow from
Homology, Lemmas \ref{homology-lemma-adjoint-preserve-injectives} and
\ref{homology-lemma-adjoint-enough-injectives}.
\end{proof}
\noindent
Let $A$ be a ring. As in
Formal Deformation Theory, Section
\ref{formal-defos-section-tangent-spaces-functors}
given an $A$-algebra $B$ and an $B$-module $N$ we set $B[N]$ equal to
the $R$-algebra with underlying $B$-module $B \oplus N$ with multiplication
given by $(b, m)(b', m ') = (bb', bm' + b'm)$. Note that this construction
is functorial in the pair $(B, N)$ where morphism $(B, N) \to (B', N')$
is given by an $A$-algebra map $B \to B'$ and an $B$-module map
$N \to N'$. In some sense the functor $TF$ of pairs defined in the following
lemma is the tangent space of $F$.
Below we will only consider pairs $(B, N)$ such that
$B[N]$ is an object of $\textit{Alg}_A$.
\begin{lemma}
\label{lemma-tangent-functor}
Let $A$ be a ring. Let $F$ be a module valued functor.
For every $B \in \Ob(\textit{Alg}_A)$ and $B$-module $N$
there is a canonical decomposition
$$
F(B[N]) = F(B) \oplus TF(B, N)
$$
characterized by the following properties
\begin{enumerate}
\item $TF(B, N) = \Ker(F(B[N]) \to F(B))$,
\item there is a $B$-module structure $TF(B, N)$
compatible with $B[N]$-module structure on $F(B[N])$,
\item $TF$ is a functor from the category of pairs $(B, N)$,
\item
\label{item-mult-map}
there are canonical maps $N \otimes_B F(B) \to TF(B, N)$
inducing a transformation between functors defined on the category
of pairs $(B, N)$,
\item $TF(B, 0) = 0$ and the map $TF(B, N) \to TF(B, N')$ is
zero when $N \to N'$ is the zero map.
\end{enumerate}
\end{lemma}
\begin{proof}
Since $B \to B[N] \to B$ is the identity we see that $F(B) \to F(B[N])$
is a direct summand whose complement is $TF(N, B)$ as defined in (1).
This construction is functorial in the pair $(B, N)$ simply because
given a morphism of pairs $(B, N) \to (B', N')$ we obtain a commutative
diagram
$$
\xymatrix{
B' \ar[r] & B'[N'] \ar[r] & B' \\
B \ar[r] \ar[u] & B[N] \ar[r] \ar[u] & B \ar[u]
}
$$
in $\textit{Alg}_A$. The $B$-module structure comes from the $B[N]$-module
structure and the ring map $B \to B[N]$. The map in (4) is the
composition
$$
N \otimes_B F(B) \longrightarrow
B[N] \otimes_{B[N]} F(B[N]) \longrightarrow F(B[N])
$$
whose image is contained in $TF(B, N)$. (The first arrow uses the inclusions
$N \to B[N]$ and $F(B) \to F(B[N])$ and the second arrow is the multiplication
map.) If $N = 0$, then $B = B[N]$
hence $TF(B, 0) = 0$. If $N \to N'$ is zero then it factors as
$N \to 0 \to N'$ hence the induced map is zero since $TF(B, 0) = 0$.
\end{proof}
\noindent
Let $A$ be a ring. Let $M$ be an $A$-module. Then the module-valued functor
$\underline{M}$ has tangent space $T\underline{M}$ given by the rule
$T\underline{M}(B, N) = N \otimes_A M$. In particular, for $B$ given, the
functor $N \mapsto T\underline{M}(B, N)$ is additive and right exact. It turns
out this also holds for injective module-valued functors.
\begin{lemma}
\label{lemma-tangent-injective}
Let $A$ be a ring. Let $I$ be an injective object of the category
of module-valued functors. Then for any $B \in \Ob(\textit{Alg}_A)$
and short exact sequence
$0 \to N_1 \to N \to N_2 \to 0$
of $B$-modules the sequence
$$
TI(B, N_1) \to TI(B, N) \to TI(B, N_2) \to 0
$$
is exact.
\end{lemma}
\begin{proof}
We will use the results of
Lemma \ref{lemma-tangent-functor}
without further mention.
Denote $h : \textit{Alg}_A \to \textit{Sets}$ the functor given by
$h(C) = \Mor_A(B[N], C)$. Similarly for $h_1$ and $h_2$.
The map $B[N] \to B[N_2]$ corresponding to the surjection $N \to N_2$
is surjective. It corresponds to a map $h_2 \to h$ such that
$h_2(C) \to h(C)$ is injective for all $A$-algebras $C$. On the other
hand, there are two maps $p, q : h \to h_1$, corresponding to the
zero map $N_1 \to N$ and the injection $N_1 \to N$. Note that