-
Notifications
You must be signed in to change notification settings - Fork 152
/
equiv.tex
4358 lines (3991 loc) · 162 KB
/
equiv.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Derived Categories of Varieties}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we continue the discussion started in
Derived Categories of Schemes, Section \ref{perfect-section-introduction}.
We will discuss Fourier-Mukai transforms,
first studied by Mukai in \cite{Mukai}.
We will prove Orlov's theorem on derived equivalences (\cite{Orlov-K3}).
We also discuss the countability of derived equivalence
classes proved by Anel and To\"en in \cite{AT}.
\medskip\noindent
A good introduction to this material is the book
\cite{Huybrechts} by Daniel Huybrechts. Some other
papers which helped popularize this topic are
\begin{enumerate}
\item the paper by Bondal and Kapranov, see \cite{Bondal-Kapranov}
\item the paper by Bondal and Orlov, see \cite{Bondal-Orlov}
\item the paper by Bondal and Van den Bergh, see \cite{BvdB}
\item the papers by Beilinson, see
\cite{Beilinson} and \cite{Beilinson-derived}
\item the paper by Orlov, see \cite{Orlov-AV}
\item the paper by Orlov, see \cite{Orlov-motives}
\item the paper by Rouquier, see \cite{Rouquier-dimensions}
\item there are many more we could mention here.
\end{enumerate}
\section{Conventions and notation}
\label{section-conventions}
\noindent
Let $k$ be a field. A $k$-linear triangulated category $\mathcal{T}$
is a triangulated category (Derived Categories, Section
\ref{derived-section-triangulated-definitions})
which is endowed with a $k$-linear structure
(Differential Graded Algebra, Section \ref{dga-section-linear})
such that the translation functors $[n] : \mathcal{T} \to \mathcal{T}$
are $k$-linear for all $n \in \mathbf{Z}$.
\medskip\noindent
Let $k$ be a field. We denote $\text{Vect}_k$ the category of
$k$-vector spaces. For a $k$-vector space $V$ we denote
$V^\vee$ the $k$-linear dual of $V$, i.e., $V^\vee = \Hom_k(V, k)$.
\medskip\noindent
Let $X$ be a scheme. We denote $D_{perf}(\mathcal{O}_X)$ the full
subcategory of $D(\mathcal{O}_X)$ consisting of perfect complexes
(Cohomology, Section \ref{cohomology-section-perfect}).
If $X$ is Noetherian then
$D_{perf}(\mathcal{O}_X) \subset D^b_{\textit{Coh}}(\mathcal{O}_X)$, see
Derived Categories of Schemes, Lemma \ref{perfect-lemma-perfect-on-noetherian}.
If $X$ is Noetherian and regular, then
$D_{perf}(\mathcal{O}_X) = D^b_{\textit{Coh}}(\mathcal{O}_X)$, see
Derived Categories of Schemes, Lemma \ref{perfect-lemma-perfect-on-regular}.
\medskip\noindent
Let $k$ be a field. Let $X$ and $Y$ be schemes over $k$. In this
situation we will write $X \times Y$ instead of $X \times_{\Spec(k)} Y$.
\medskip\noindent
Let $S$ be a scheme. Let $X$, $Y$ be schemes over $S$.
Let $\mathcal{F}$ be a $\mathcal{O}_X$-module and let
$\mathcal{G}$ be a $\mathcal{O}_Y$-module. We set
$$
\mathcal{F} \boxtimes \mathcal{G} =
\text{pr}_1^*\mathcal{F} \otimes_{\mathcal{O}_{X \times_S Y}}
\text{pr}_2^*\mathcal{G}
$$
as $\mathcal{O}_{X \times_S Y}$-modules.
If $K \in D(\mathcal{O}_X)$ and $M \in D(\mathcal{O}_Y)$ then we set
$$
K \boxtimes M =
L\text{pr}_1^*K \otimes_{\mathcal{O}_{X \times_S Y}}^\mathbf{L} L\text{pr}_2^*M
$$
as an object of $D(\mathcal{O}_{X \times_S Y})$.
Thus our notation is potentially ambiguous, but context should make it clear
which of the two is meant.
\section{Serre functors}
\label{section-Serre-functors}
\noindent
The material in this section is taken from \cite{Bondal-Kapranov}.
\begin{lemma}
\label{lemma-Serre-functor-exists}
Let $k$ be a field. Let $\mathcal{T}$ be a $k$-linear
triangulated category such that $\dim_k \Hom_\mathcal{T}(X, Y) < \infty$
for all $X, Y \in \Ob(\mathcal{T})$. The following are equivalent
\begin{enumerate}
\item there exists a $k$-linear equivalence
$S : \mathcal{T} \to \mathcal{T}$ and $k$-linear isomorphisms
$c_{X, Y} : \Hom_\mathcal{T}(X, Y) \to \Hom_\mathcal{T}(Y, S(X))^\vee$
functorial in $X, Y \in \Ob(\mathcal{T})$,
\item for every $X \in \Ob(\mathcal{T})$
the functor $Y \mapsto \Hom_\mathcal{T}(X, Y)^\vee$
is representable and the functor $Y \mapsto \Hom_\mathcal{T}(Y, X)^\vee$
is corepresentable.
\end{enumerate}
\end{lemma}
\begin{proof}
Condition (1) implies (2) since given $(S, c)$ and $X \in \Ob(\mathcal{T})$
the object $S(X)$ represents the functor
$Y \mapsto \Hom_\mathcal{T}(X, Y)^\vee$ and the object $S^{-1}(X)$ corepresents
the functor $Y \mapsto \Hom_\mathcal{T}(Y, X)^\vee$.
\medskip\noindent
Assume (2). We will repeatedly use the Yoneda lemma, see
Categories, Lemma \ref{categories-lemma-yoneda}.
For every $X$ denote $S(X)$ the object representing the
functor $Y \mapsto \Hom_\mathcal{T}(X, Y)^\vee$. Given
$\varphi : X \to X'$, we obtain a unique arrow $S(\varphi) : S(X) \to S(X')$
determined by the corresponding transformation of functors
$\Hom_\mathcal{T}(X, -)^\vee \to \Hom_\mathcal{T}(X', -)^\vee$.
Thus $S$ is a functor and we obtain the isomorphisms $c_{X, Y}$
by construction. It remains to show that $S$ is an equivalence.
For every $X$ denote $S'(X)$ the object corepresenting the
functor $Y \mapsto \Hom_\mathcal{T}(Y, X)^\vee$. Arguing as
above we find that $S'$ is a functor. We claim that $S'$
is quasi-inverse to $S$. To see this observe that
$$
\Hom_\mathcal{T}(X, Y) = \Hom_\mathcal{T}(Y, S(X))^\vee =
\Hom_\mathcal{T}(S'(S(X)), Y)
$$
bifunctorially, i.e., we find $S' \circ S \cong \text{id}_\mathcal{T}$.
Similarly, we have
$$
\Hom_\mathcal{T}(Y, X) = \Hom_\mathcal{T}(S'(X), Y)^\vee =
\Hom_\mathcal{T}(Y, S(S'(X)))
$$
and we find $S \circ S' \cong \text{id}_\mathcal{T}$.
\end{proof}
\begin{definition}
\label{definition-Serre-functor}
Let $k$ be a field. Let $\mathcal{T}$ be a $k$-linear
triangulated category such that $\dim_k \Hom_\mathcal{T}(X, Y) < \infty$
for all $X, Y \in \Ob(\mathcal{T})$. We say {\it a Serre functor
exists} if the equivalent conditions of Lemma \ref{lemma-Serre-functor-exists}
are satisfied. In this case a {\it Serre functor} is a $k$-linear equivalence
$S : \mathcal{T} \to \mathcal{T}$ endowed with $k$-linear isomorphisms
$c_{X, Y} : \Hom_\mathcal{T}(X, Y) \to \Hom_\mathcal{T}(Y, S(X))^\vee$
functorial in $X, Y \in \Ob(\mathcal{T})$.
\end{definition}
\begin{lemma}
\label{lemma-Serre-functor}
In the situation of Definition \ref{definition-Serre-functor}.
If a Serre functor exists, then it is unique up to unique isomorphism and
it is an exact functor of triangulated categories.
\end{lemma}
\begin{proof}
Given a Serre functor $S$ the object $S(X)$ represents
the functor $Y \mapsto \Hom_\mathcal{T}(X, Y)^\vee$.
Thus the object $S(X)$ together with the functorial identification
$\Hom_\mathcal{T}(X, Y)^\vee = \Hom_\mathcal{T}(Y, S(X))$
is determined up to unique isomorphism by the Yoneda lemma
(Categories, Lemma \ref{categories-lemma-yoneda}).
Moreover, for $\varphi : X \to X'$, the arrow $S(\varphi) : S(X) \to S(X')$
is uniquely determined by the corresponding transformation of functors
$\Hom_\mathcal{T}(X, -)^\vee \to \Hom_\mathcal{T}(X', -)^\vee$.
\medskip\noindent
For objects $X, Y$ of $\mathcal{T}$ we have
\begin{align*}
\Hom(Y, S(X)[1])^\vee
& =
\Hom(Y[-1], S(X))^\vee \\
& =
\Hom(X, Y[-1]) \\
& =
\Hom(X[1], Y) \\
& =
\Hom(Y, S(X[1]))^\vee
\end{align*}
By the Yoneda lemma we conclude that there is a unique isomorphism
$S(X[1]) \to S(X)[1]$ inducing the isomorphism from top left to bottom right.
Since each of the isomorphisms above is functorial in both $X$ and $Y$
we find that this defines an isomorphism of functors
$S \circ [1] \to [1] \circ S$.
\medskip\noindent
Let $(A, B, C, f, g, h)$ be a distinguished triangle in $\mathcal{T}$.
We have to show that the triangle $(S(A), S(B), S(C), S(f), S(g), S(h))$
is distinguished. Here we use the canonical isomorphism $S(A[1]) \to S(A)[1]$
constructed above to identify the target $S(A[1])$ of $S(h)$ with $S(A)[1]$.
We first observe that for any $X$ in $\mathcal{T}$
the triangle $(S(A), S(B), S(C), S(f), S(g), S(h))$ induces
a long exact sequence
$$
\ldots \to
\Hom(X, S(A)) \to
\Hom(X, S(B)) \to
\Hom(X, S(C)) \to
\Hom(X, S(A)[1]) \to \ldots
$$
of finite dimensional $k$-vector spaces. Namely, this sequence is
$k$-linear dual of the sequence
$$
\ldots \leftarrow
\Hom(A, X) \leftarrow
\Hom(B, X) \leftarrow
\Hom(C, X) \leftarrow
\Hom(A[1], X) \leftarrow
\ldots
$$
which is exact by Derived Categories, Lemma
\ref{derived-lemma-representable-homological}.
Next, we choose a distinguished triangle $(S(A), E, S(C), i, p, S(h))$
which is possible by axioms TR1 and TR2. We want to construct the dotted
arrow making following diagram commute
$$
\xymatrix{
S(C)[-1] \ar[r]_-{S(h[-1])} &
S(A) \ar[r]_{S(f)} &
S(B) \ar[r]_{S(g)} &
S(C) \ar[r]_{S(h)} &
S(A)[1] \\
S(C)[-1] \ar[r]^-{S(h[-1])} \ar@{=}[u] &
S(A) \ar[r]^i \ar@{=}[u] &
E \ar[r]^p \ar@{..>}[u]^\varphi &
S(C) \ar[r]^{S(h)} \ar@{=}[u] &
S(A)[1] \ar@{=}[u]
}
$$
Namely, if we have $\varphi$, then we claim for any $X$ the resulting
map $\Hom(X, E) \to \Hom(X, S(B))$ will be an isomorphism of $k$-vector
spaces. Namely, we will obtain a commutative diagram
$$
\xymatrix{
\Hom(X, S(C)[-1]) \ar[r] &
\Hom(X, S(A)) \ar[r] &
\Hom(X, S(B)) \ar[r] &
\Hom(X, S(C)) \ar[r] &
\Hom(X, S(A)[1]) \\
\Hom(X, S(C)[-1]) \ar[r] \ar@{=}[u] &
\Hom(X, S(A)) \ar[r] \ar@{=}[u] &
\Hom(X, E) \ar[r] \ar[u]^\varphi &
\Hom(X, S(C)) \ar[r] \ar@{=}[u] &
\Hom(X, S(A)[1]) \ar@{=}[u]
}
$$
with exact rows (see above) and we can apply the 5 lemma
(Homology, Lemma \ref{homology-lemma-five-lemma}) to see
that the middle arrow is an isomorphism. By the Yoneda lemma
we conclude that $\varphi$ is an isomorphism.
To find $\varphi$ consider the following diagram
$$
\xymatrix{
\Hom(E, S(C)) \ar[r] &
\Hom(S(A), S(C)) \\
\Hom(E, S(B)) \ar[u] \ar[r] &
\Hom(S(A), S(B)) \ar[u]
}
$$
The elements $p$ and $S(f)$ in positions $(0, 1)$ and
$(1, 0)$ define a cohomology class $\xi$ in the total complex
of this double complex. The existence of $\varphi$ is
equivalent to whether $\xi$ is zero. If we take $k$-linear duals
of this and we use the defining property of $S$ we obtain
$$
\xymatrix{
\Hom(C, E) \ar[d] &
\Hom(C, S(A)) \ar[l] \ar[d] \\
\Hom(B, E) &
\Hom(B, S(A)) \ar[l]
}
$$
Since both $A \to B \to C$ and $S(A) \to E \to S(C)$ are distinguished
triangles, we know by TR3 that given elements $\alpha \in \Hom(C, E)$
and $\beta \in \Hom(B, S(A))$ mapping to the same element in
$\Hom(B, E)$, there exists an element in $\Hom(C, S(A))$ mapping
to both $\alpha$ and $\beta$. In other words, the cohomology of
the total complex associated to this double complex is zero in degree
$1$, i.e., the degree corresponding to $\Hom(C, E) \oplus \Hom(B, S(A))$.
Taking duals the same must be true for the previous one which concludes
the proof.
\end{proof}
\section{Examples of Serre functors}
\label{section-examples-Serre-functors}
\noindent
The lemma below is the standard example.
\begin{lemma}
\label{lemma-Serre-functor-Gorenstein-proper}
Let $k$ be a field. Let $X$ be a proper scheme over $k$ which is Gorenstein.
Consider the complex $\omega_X^\bullet$ of
Duality for Schemes, Lemmas \ref{duality-lemma-duality-proper-over-field}.
Then the functor
$$
S : D_{perf}(\mathcal{O}_X) \longrightarrow D_{perf}(\mathcal{O}_X),\quad
K \longmapsto S(K) = \omega_X^\bullet \otimes_{\mathcal{O}_X}^\mathbf{L} K
$$
is a Serre functor.
\end{lemma}
\begin{proof}
The statement make sense because $\dim \Hom_X(K, L) < \infty$
for $K, L \in D_{perf}(\mathcal{O}_X)$ by
Derived Categories of Schemes, Lemma \ref{perfect-lemma-ext-finite}.
Since $X$ is Gorenstein the dualizing complex $\omega_X^\bullet$
is an invertible object of $D(\mathcal{O}_X)$, see
Duality for Schemes, Lemma \ref{duality-lemma-gorenstein}.
In particular, locally on $X$ the complex $\omega_X^\bullet$
has one nonzero cohomology sheaf which is an invertible module, see
Cohomology, Lemma \ref{cohomology-lemma-invertible-derived}.
Thus $S(K)$ lies in $D_{perf}(\mathcal{O}_X)$.
On the other hand, the invertibility of $\omega_X^\bullet$
clearly implies that $S$ is a self-equivalence of $D_{perf}(\mathcal{O}_X)$.
Finally, we have to find an isomorphism
$$
c_{K, L} : \Hom_X(K, L) \longrightarrow
\Hom_X(L, \omega_X^\bullet \otimes_{\mathcal{O}_X}^\mathbf{L} K)^\vee
$$
bifunctorially in $K, L$. To do this we use the canonical isomorphisms
$$
\Hom_X(K, L) = H^0(X, L \otimes_{\mathcal{O}_X}^\mathbf{L} K^\vee)
$$
and
$$
\Hom_X(L, \omega_X^\bullet \otimes_{\mathcal{O}_X}^\mathbf{L} K) =
H^0(X,
\omega_X^\bullet \otimes_{\mathcal{O}_X}^\mathbf{L} K
\otimes_{\mathcal{O}_X}^\mathbf{L} L^\vee)
$$
given in Cohomology, Lemma \ref{cohomology-lemma-dual-perfect-complex}.
Since $(L \otimes_{\mathcal{O}_X}^\mathbf{L} K^\vee)^\vee =
(K^\vee)^\vee \otimes_{\mathcal{O}_X}^\mathbf{L} L^\vee$
and since there is a canonical isomorphism $K \to (K^\vee)^\vee$
we find these $k$-vector spaces are canonically dual by
Duality for Schemes, Lemma
\ref{duality-lemma-duality-proper-over-field-perfect}.
This produces the isomorphisms $c_{K, L}$.
We omit the proof that these isomorphisms are functorial.
\end{proof}
\section{Characterizing coherent modules}
\label{section-coherent}
\noindent
This section is in some sense a continuation of the discussion
in Derived Categories of Schemes, Section \ref{perfect-section-pseudo-coherent}
and More on Morphisms, Section
\ref{more-morphisms-section-characterize-pseudo-coherent}.
\medskip\noindent
Before we can state the result we need some notation.
Let $k$ be a field. Let $n \geq 0$ be an integer.
Let $S = k[X_0, \ldots, X_n]$. For an integer $e$ denote
$S_e \subset S$ the homogeneous polynomials of degree $e$.
Consider the (noncommutative) $k$-algebra
$$
R =
\left(
\begin{matrix}
S_0 & S_1 & S_2 & \ldots & \ldots \\
0 & S_0 & S_1 & \ldots & \ldots\\
0 & 0 & S_0 & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & \ldots & \ldots & S_0
\end{matrix}
\right)
$$
(with $n + 1$ rows and columns) with obvious multiplication and addition.
\begin{lemma}
\label{lemma-perfect-for-R}
With $k$, $n$, and $R$ as above, for an object $K$ of $D(R)$
the following are equivalent
\begin{enumerate}
\item $\sum_{i \in \mathbf{Z}} \dim_k H^i(K) < \infty$, and
\item $K$ is a compact object.
\end{enumerate}
\end{lemma}
\begin{proof}
If $K$ is a compact object, then $K$ can be represented by a complex
$M^\bullet$ which is finite projective as a graded $R$-module, see
Differential Graded Algebra, Lemma \ref{dga-lemma-compact}.
Since $\dim_k R < \infty$ we conclude $\sum \dim_k M^i < \infty$
and a fortiori $\sum \dim_k H^i(M^\bullet) < \infty$.
(One can also easily deduce this implication from the easier
Differential Graded Algebra, Proposition \ref{dga-proposition-compact}.)
\medskip\noindent
Assume $K$ satisfies (1). Consider the distinguished triangle
of trunctions $\tau_{\leq m}K \to K \to \tau_{\geq m + 1}K$, see
Derived Categories, Remark
\ref{derived-remark-truncation-distinguished-triangle}.
It is clear that both $\tau_{\leq m}K$ and $\tau_{\geq m + 1} K$
satisfy (1). If we can show both are compact, then so is $K$, see
Derived Categories, Lemma \ref{derived-lemma-compact-objects-subcategory}.
Hence, arguing on the number of nonzero cohomology modules of $K$
we may assume $H^i(K)$ is nonzero only for one $i$.
Shifting, we may assume $K$ is given by the complex
consisting of a single finite dimensional $R$-module $M$ sitting
in degree $0$.
\medskip\noindent
Since $\dim_k(M) < \infty$ we see that $M$ is Artinian as an $R$-module.
Thus it suffices to show that every simple $R$-module represents a
compact object of $D(R)$. Observe that
$$
I =
\left(
\begin{matrix}
0 & S_1 & S_2 & \ldots & \ldots \\
0 & 0 & S_1 & \ldots & \ldots\\
0 & 0 & 0 & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & \ldots & \ldots & 0
\end{matrix}
\right)
$$
is a nilpotent two sided ideal of $R$ and that $R/I$
is a commutative $k$-algebra isomorphic to a product of $n + 1$ copies of
$k$ (placed along the diagonal in the matrix, i.e., $R/I$ can be lifted
to a $k$-subalgebra of $R$). It follows that $R$ has exactly $n + 1$
isomorphism classes of simple modules $M_0, \ldots, M_n$ (sitting along
the diagonal). Consider the right $R$-module $P_i$ of row vectors
$$
P_i =
\left(
\begin{matrix}
0 &
\ldots &
0 &
S_0 &
\ldots &
S_{i - 1} &
S_i
\end{matrix}
\right)
$$
with obvious multiplication $P_i \times R \to P_i$. Then we see that
$R \cong P_0 \oplus \ldots \oplus P_n$ as a right $R$-module. Since clearly
$R$ is a compact object of $D(R)$, we conclude each $P_i$ is a compact
object of $D(R)$. (We of course also conclude each $P_i$ is projective
as an $R$-module, but this isn't what we have to show in this proof.)
Clearly, $P_0 = M_0$ is the first of our simple $R$-modules.
For $P_1$ we have a short exact sequence
$$
0 \to P_0^{\oplus n + 1} \to P_1 \to M_1 \to 0
$$
which proves that $M_1$ fits into a distinguished triangle whose
other members are compact objects and hence $M_1$ is a compact
object of $D(R)$. More generally, there exists a short exact sequence
$$
0 \to C_i \to P_i \to M_i \to 0
$$
where $C_i$ is a finite dimensional $R$-module whose simple constituents
are isomorphic to $M_j$ for $j < i$. By induction, we first conclude that
$C_i$ determines a compact object of $D(R)$ whereupon we conclude that $M_i$
does too as desired.
\end{proof}
\begin{lemma}
\label{lemma-coherent-on-projective-space}
Let $k$ be a field. Let $n \geq 0$. Let
$K \in D_\QCoh(\mathcal{O}_{\mathbf{P}^n_k})$.
The following are equivalent
\begin{enumerate}
\item $K$ is in $D^b_{\textit{Coh}}(\mathcal{O}_{\mathbf{P}^n_k})$,
\item $\sum_{i \in \mathbf{Z}}
\dim_k H^i(\mathbf{P}^n_k, E \otimes^\mathbf{L} K) < \infty$
for each perfect object $E$ of
$D(\mathcal{O}_{\mathbf{P}^n_k})$,
\item $\sum_{i \in \mathbf{Z}}
\dim_k \Ext^i_{\mathbf{P}^n_k}(E, K) < \infty$
for each perfect object $E$ of $D(\mathcal{O}_{\mathbf{P}^n_k})$,
\item $\sum_{i \in \mathbf{Z}} \dim_k H^i(\mathbf{P}^n_k,
K \otimes^\mathbf{L} \mathcal{O}_{\mathbf{P}^n_k}(d)) < \infty$
for $d = 0, 1, \ldots, n$.
\end{enumerate}
\end{lemma}
\begin{proof}
Parts (2) and (3) are equivalent by
Cohomology, Lemma \ref{cohomology-lemma-dual-perfect-complex}.
If (1) is true, then for $E$ perfect the derived tensor product
$E \otimes^\mathbf{L} K$ is in
$D^b_{\textit{Coh}}(\mathcal{O}_{\mathbf{P}^n_k})$
and we see that (2) holds by
Derived Categories of Schemes, Lemma \ref{perfect-lemma-direct-image-coherent}.
It is clear that (2) implies (4) as $\mathcal{O}_{\mathbf{P}^n_k}(d)$
can be viewed
as a perfect object of the derived category of $\mathbf{P}^n_k$.
Thus it suffices to prove that (4) implies (1).
\medskip\noindent
Assume (4). Let $R$ be as in Lemma \ref{lemma-perfect-for-R}.
Let $P = \bigoplus_{d = 0, \ldots, n} \mathcal{O}_{\mathbf{P}^n_k}(-d)$.
Recall that $R = \text{End}_{\mathbf{P}^n_k}(P)$ whereas all other
self-Exts of $P$ are zero and that $P$ determines an equivalence
$- \otimes^\mathbf{L} P : D(R) \to D_\QCoh(\mathcal{O}_{\mathbf{P}^n_k})$
by Derived Categories of Schemes, Lemma \ref{perfect-lemma-Pn-module-category}.
Say $K$ corresponds to $L$ in $D(R)$. Then
\begin{align*}
H^i(L)
& =
\Ext^i_{D(R)}(R, L) \\
& =
\Ext^i_{\mathbf{P}^n_k}(P, K) \\
& =
H^i(\mathbf{P}^n_k, K \otimes P^\vee) \\
& =
\bigoplus\nolimits_{d = 0, \ldots, n}
H^i(\mathbf{P}^n_k, K \otimes \mathcal{O}(d))
\end{align*}
by Differential Graded Algebra, Lemma
\ref{dga-lemma-upgrade-tensor-with-complex-derived}
(and the fact that $- \otimes^\mathbf{L} P$ is an equivalence)
and Cohomology, Lemma \ref{cohomology-lemma-dual-perfect-complex}.
Thus our assumption (4) implies that $L$ satisfies condition (2) of
Lemma \ref{lemma-perfect-for-R} and hence is a compact object of $D(R)$.
Therefore $K$ is a compact object of
$D_\QCoh(\mathcal{O}_{\mathbf{P}^n_k})$.
Thus $K$ is perfect by
Derived Categories of Schemes, Proposition
\ref{perfect-proposition-compact-is-perfect}.
Since $D_{perf}(\mathcal{O}_{\mathbf{P}^n_k}) =
D^b_{\textit{Coh}}(\mathcal{O}_{\mathbf{P}^n_k})$
by
Derived Categories of Schemes, Lemma \ref{perfect-lemma-perfect-on-regular}
we conclude (1) holds.
\end{proof}
\begin{lemma}
\label{lemma-finiteness}
Let $X$ be a scheme proper over a field $k$. Let
$K \in D^b_{\textit{Coh}}(\mathcal{O}_X)$ and let $E$ in $D(\mathcal{O}_X)$
be perfect. Then
$\sum_{i \in \mathbf{Z}} \dim_k \Ext^i_X(E, K) < \infty$.
\end{lemma}
\begin{proof}
This follows for example by combining
Derived Categories of Schemes, Lemmas \ref{perfect-lemma-ext-finite} and
\ref{perfect-lemma-ext-from-perfect-into-bounded-QCoh}.
Alternative proof: combine
Derived Categories of Schemes, Lemmas
\ref{perfect-lemma-perfect-on-noetherian} and
\ref{perfect-lemma-direct-image-coherent}.
\end{proof}
\begin{lemma}
\label{lemma-characterize-dbcoh-projective}
\begin{reference}
In the projective case this is \cite[Lemma 7.46]{Rouquier-dimensions}
and implicit in \cite[Theorem A.1]{BvdB}
\end{reference}
Let $X$ be a proper scheme over a field $k$. Let
$K \in \Ob(D_\QCoh(\mathcal{O}_X))$. The following are equivalent
\begin{enumerate}
\item $K \in D^b_{\textit{Coh}}(\mathcal{O}_X)$, and
\item $\sum_{i \in \mathbf{Z}} \dim_k \Ext^i_X(E, K) < \infty$
for all perfect $E$ in $D(\mathcal{O}_X)$.
\end{enumerate}
\end{lemma}
\begin{proof}
The implication (1) $\Rightarrow$ (2) follows from
Lemma \ref{lemma-finiteness}.
The implication (2) $\Rightarrow$ (1) follows from
More on Morphisms, Lemma
\ref{more-morphisms-lemma-characterize-relatively-perfect}
(see Derived Categories of Schemes, Example
\ref{perfect-example-relatively-perfect-field}
for the meaning of a relatively perfect object over a field);
the easier proof in the projective case is in the next paragraph.
\medskip\noindent
Assume (2) and $X$ projective over $k$.
Choose a closed immersion $i : X \to \mathbf{P}^n_k$. It suffices to show
that $Ri_*K$ is in $D^b_{\textit{Coh}}(\mathbf{P}^n_k)$ since a quasi-coherent
module $\mathcal{F}$ on $X$ is coherent, resp.\ zero if and only if
$i_*\mathcal{F}$ is coherent, resp.\ zero. For a perfect object $E$
of $D(\mathcal{O}_{\mathbf{P}^n_k})$, $Li^*E$ is a perfect object of
$D(\mathcal{O}_X)$ and
$$
\Ext^q_{\mathbf{P}^n_k}(E, Ri_*K) = \Ext^q_X(Li^*E, K)
$$
Hence by our assumption we see that
$\sum_{q \in \mathbf{Z}} \dim_k \Ext^q_{\mathbf{P}^n_k}(E, Ri_*K) < \infty$.
We conclude by Lemma \ref{lemma-coherent-on-projective-space}.
\end{proof}
\section{A representability theorem}
\label{section-bondal-van-den-bergh}
\noindent
The material in this section is taken from \cite{BvdB}.
\medskip\noindent
Let $\mathcal{T}$ be a $k$-linear triangulated category.
In this section we consider $k$-linear cohomological functors
$H$ from $\mathcal{T}$ to the category of $k$-vector spaces.
This will mean $H$ is a functor
$$
H : \mathcal{T}^{opp} \longrightarrow \text{Vect}_k
$$
which is $k$-linear such that for any distinguished triangle
$X \to Y \to Z$ in $\mathcal{T}$ the sequence $H(Z) \to H(Y) \to H(X)$
is an exact sequence of $k$-vector spaces. See
Derived Categories, Definition \ref{derived-definition-homological}
and Differential Graded Algebra, Section \ref{dga-section-linear}.
\begin{lemma}
\label{lemma-maps-from-compact-filtered}
Let $\mathcal{D}$ be a triangulated category. Let
$\mathcal{D}' \subset \mathcal{D}$ be a full triangulated subcategory. Let
$X \in \Ob(\mathcal{D})$. The category of arrows $E \to X$ with
$E \in \Ob(\mathcal{D}')$ is filtered.
\end{lemma}
\begin{proof}
We check the conditions of
Categories, Definition \ref{categories-definition-directed}.
The category is nonempty because it contains $0 \to X$.
If $E_i \to X$, $i = 1, 2$ are objects, then $E_1 \oplus E_2 \to X$
is an object and there are morphisms $(E_i \to X) \to (E_1 \oplus E_2 \to X)$.
Finally, suppose that $a, b : (E \to X) \to (E' \to X)$ are morphisms.
Choose a distinguished triangle $E \xrightarrow{a - b} E' \to E''$
in $\mathcal{D}'$. By Axiom TR3 we obtain a morphism of triangles
$$
\xymatrix{
E \ar[r]_{a - b} \ar[d] &
E' \ar[d] \ar[r] & E'' \ar[d] \\
0 \ar[r] &
X \ar[r] &
X
}
$$
and we find that the resulting arrow $(E' \to X) \to (E'' \to X)$
equalizes $a$ and $b$.
\end{proof}
\begin{lemma}
\label{lemma-van-den-bergh}
\begin{reference}
\cite[Lemma 2.14]{CKN}
\end{reference}
Let $k$ be a field. Let $\mathcal{D}$ be a $k$-linear triangulated category
which has direct sums and is compactly generated.
Denote $\mathcal{D}_c$ the full
subcategory of compact objects. Let $H : \mathcal{D}_c^{opp} \to \text{Vect}_k$
be a $k$-linear cohomological functor such that
$\dim_k H(X) < \infty$ for all $X \in \Ob(\mathcal{D}_c)$.
Then $H$ is isomorphic to the functor $X \mapsto \Hom(X, Y)$
for some $Y \in \Ob(\mathcal{D})$.
\end{lemma}
\begin{proof}
We will use Derived Categories, Lemma
\ref{derived-lemma-compact-objects-subcategory} without further mention.
Denote $G : \mathcal{D}_c \to \text{Vect}_k$ the $k$-linear homological
functor which sends $X$ to $H(X)^\vee$. For any object $Y$ of $\mathcal{D}$
we set
$$
G'(Y) = \colim_{X \to Y, X \in \Ob(\mathcal{D}_c)} G(X)
$$
The colimit is filtered by Lemma \ref{lemma-maps-from-compact-filtered}.
We claim that $G'$ is a $k$-linear homological functor,
the restriction of $G'$ to $\mathcal{D}_c$ is $G$, and $G'$
sends direct sums to direct sums.
\medskip\noindent
Namely, suppose that $Y_1 \to Y_2 \to Y_3$ is a distinguished triangle.
Let $\xi \in G'(Y_2)$ map to zero in $G'(Y_3)$. Since the colimit is
filtered $\xi$ is represented by some $X \to Y_2$ with
$X \in \Ob(\mathcal{D}_c)$ and $g \in G(X)$.
The fact that $\xi$ maps to zero in $G'(Y_3)$ means the composition
$X \to Y_2 \to Y_3$ factors as $X \to X' \to Y_3$ with $X' \in \mathcal{D}_c$
and $g$ mapping to zero in $G(X')$. Choose a distinguished
triangle $X'' \to X \to X'$. Then $X'' \in \Ob(\mathcal{D}_c)$.
Since $G$ is homological we find that $g$ is the image of some
$g'' \in G'(X'')$. By Axiom TR3 the maps $X \to Y_2$ and $X' \to Y_3$ fit into
a morphism of distinguished triangles
$(X'' \to X \to X') \to (Y_1 \to Y_2 \to Y_3)$
and we find that indeed $\xi$ is the image of the
element of $G'(Y_1)$ represented by $X'' \to Y_1$ and $g'' \in G(X'')$.
\medskip\noindent
If $Y \in \Ob(\mathcal{D}_c)$, then $\text{id} : Y \to Y$ is the final
object in the category of arrows $X \to Y$ with $X \in \Ob(\mathcal{D}_c)$.
Hence we see that $G'(Y) = G(Y)$ in this case and the
statement on restriction holds. Let $Y = \bigoplus_{i \in I} Y_i$
be a direct sum. Let $a : X \to Y$ with $X \in \Ob(\mathcal{D}_c)$
and $g \in G(X)$ represent an element $\xi$ of $G'(Y)$.
The morphism $a : X \to Y$ can be uniquely written as a sum of morphisms
$a_i : X \to Y_i$ almost all zero as $X$ is a compact object of $\mathcal{D}$.
Let $I' = \{i \in I \mid a_i \not = 0\}$. Then we can factor
$a$ as the composition
$$
X \xrightarrow{(1, \ldots, 1)}
\bigoplus\nolimits_{i \in I'} X
\xrightarrow{\bigoplus_{i \in I'} a_i}
\bigoplus\nolimits_{i \in I} Y_i = Y
$$
We conclude that $\xi = \sum_{i \in I'} \xi_i$
is the sum of the images of the elements
$\xi_i \in G'(Y_i)$ corresponding to $a_i : X \to Y_i$
and $g \in G(X)$. Hence $\bigoplus G'(Y_i) \to G'(Y)$
is surjective. We omit the (trivial) verification that it is injective.
\medskip\noindent
It follows that the functor $Y \mapsto G'(Y)^\vee$ is cohomological
and sends direct sums to direct products. Hence by Brown representability,
see Derived Categories, Proposition \ref{derived-proposition-brown}
we conclude that there exists a $Y \in \Ob(\mathcal{D})$
and an isomorphism
$G'(Z)^\vee = \Hom(Z, Y)$ functorially in $Z$.
For $X \in \Ob(\mathcal{D}_c)$ we have
$G'(X)^\vee = G(X)^\vee = (H(X)^\vee)^\vee = H(X)$
because $\dim_k H(X) < \infty$ and the proof is complete.
\end{proof}
\begin{theorem}
\label{theorem-bondal-van-den-bergh}
\begin{reference}
In the projective case this is \cite[Theorem A.1]{BvdB}
\end{reference}
Let $X$ be a proper scheme over a field $k$.
Let $F : D_{perf}(\mathcal{O}_X)^{opp} \to \text{Vect}_k$
be a $k$-linear cohomological functor such that
$$
\sum\nolimits_{n \in \mathbf{Z}} \dim_k F(E[n]) < \infty
$$
for all $E \in D_{perf}(\mathcal{O}_X)$. Then $F$ is isomorphic to a functor
of the form $E \mapsto \Hom_X(E, K)$ for some
$K \in D^b_{\textit{Coh}}(\mathcal{O}_X)$.
\end{theorem}
\begin{proof}
The derived category $D_\QCoh(\mathcal{O}_X)$ has direct sums,
is compactly generated, and $D_{perf}(\mathcal{O}_X)$ is the full subcategory
of compact objects, see
Derived Categories of Schemes, Lemma
\ref{perfect-lemma-quasi-coherence-direct-sums},
Theorem \ref{perfect-theorem-bondal-van-den-Bergh}, and
Proposition \ref{perfect-proposition-compact-is-perfect}.
By Lemma \ref{lemma-van-den-bergh} we may assume
$F(E) = \Hom_X(E, K)$ for some $K \in \Ob(D_\QCoh(\mathcal{O}_X))$.
Then it follows that $K$ is in $D^b_{\textit{Coh}}(\mathcal{O}_X)$
by Lemma \ref{lemma-characterize-dbcoh-projective}.
\end{proof}
\begin{lemma}
\label{lemma-homological-representable}
Let $X$ be a proper scheme over a field $k$ which is regular.
Let $G : D_{perf}(\mathcal{O}_X) \to \text{Vect}_k$
be a $k$-linear homological functor such that
$$
\sum\nolimits_{n \in \mathbf{Z}} \dim_k G(E[n]) < \infty
$$
for all $E \in D_{perf}(\mathcal{O}_X)$. Then $G$ is isomorphic to a functor
of the form $E \mapsto \Hom_X(K, E)$ for some $K \in D_{perf}(\mathcal{O}_X)$.
\end{lemma}
\begin{proof}
Consider the contravariant functor $E \mapsto E^\vee$
on $D_{perf}(\mathcal{O}_X)$, see
Cohomology, Lemma \ref{cohomology-lemma-dual-perfect-complex}.
This functor is an exact anti-self-equivalence of $D_{perf}(\mathcal{O}_X)$.
Hence we may apply Theorem \ref{theorem-bondal-van-den-bergh}
to the functor $F(E) = G(E^\vee)$ to find
$K \in D_{perf}(\mathcal{O}_X)$ such that $G(E^\vee) = \Hom_X(E, K)$.
It follows that $G(E) = \Hom_X(E^\vee, K) = \Hom_X(K^\vee, E)$
and we conclude that taking $K^\vee$ works.
\end{proof}
\section{Existence of adjoints}
\label{section-adjoints}
\noindent
As a consequence of the results in the paper of Bondal and van den Bergh
we get the following automatic existence of adjoints.
\begin{lemma}
\label{lemma-always-right-adjoints}
Let $k$ be a field. Let $X$ and $Y$ be proper schemes over $k$.
If $X$ is regular, then any $k$-linear exact functor
$F : D_{perf}(\mathcal{O}_X) \to D_{perf}(\mathcal{O}_Y)$
has an exact right adjoint and an exact left adjoint.
\end{lemma}
\begin{proof}
If an adjoint exists it is an exact functor by the very general
Derived Categories, Lemma \ref{derived-lemma-adjoint-is-exact}.
\medskip\noindent
Let us prove the existence of a right adjoint.
To see existence, it suffices to show that for
$M \in D_{perf}(\mathcal{O}_Y)$ the contravariant functor
$K \mapsto \Hom_Y(F(K), M)$ is representable.
This functor is contravariant, $k$-linear, and cohomological.
Hence by Theorem \ref{theorem-bondal-van-den-bergh}
it suffices to show that
$$
\sum\nolimits_{i \in \mathbf{Z}} \dim_k \Ext^i_Y(F(K), M) < \infty
$$
This follows from Lemma \ref{lemma-finiteness}.
\medskip\noindent
For the existence of the left adjoint we argue in the same
manner using Lemma \ref{lemma-homological-representable}
in stead of Theorem \ref{theorem-bondal-van-den-bergh}.
\end{proof}
\section{Fourier-Mukai functors}
\label{section-fourier-mukai}
\noindent
These functors were first introduced in \cite{Mukai}.
\begin{definition}
\label{definition-fourier-mukai-functor}
Let $S$ be a scheme. Let $X$ and $Y$ be schemes over $S$.
Let $K \in D(\mathcal{O}_{X \times_S Y})$. The exact functor
$$
\Phi_K : D(\mathcal{O}_X) \longrightarrow D(\mathcal{O}_Y),\quad
M \longmapsto R\text{pr}_{2, *}(
L\text{pr}_1^*M \otimes_{\mathcal{O}_{X \times_S Y}}^\mathbf{L} K)
$$
of triangulated categories is called a {\it Fourier-Mukai functor}
and $K$ is called a {\it Fourier-Mukai kernel} for this functor.
Moreover,
\begin{enumerate}
\item if $\Phi_K$ sends $D_\QCoh(\mathcal{O}_X)$ into $D_\QCoh(\mathcal{O}_Y)$
then the resulting exact functor
$\Phi_K : D_\QCoh(\mathcal{O}_X) \to D_\QCoh(\mathcal{O}_Y)$
is called a Fourier-Mukai functor,
\item if $\Phi_K$ sends $D_{perf}(\mathcal{O}_X)$ into
$D_{perf}(\mathcal{O}_Y)$ then the resulting exact functor
$\Phi_K : D_{perf}(\mathcal{O}_X) \to D_{perf}(\mathcal{O}_Y)$
is called a Fourier-Mukai functor, and
\item if $X$ and $Y$ are Noetherian and $\Phi_K$ sends
$D^b_{\textit{Coh}}(\mathcal{O}_X)$ into $D^b_{\textit{Coh}}(\mathcal{O}_Y)$
then the resulting exact functor
$\Phi_K : D^b_{\textit{Coh}}(\mathcal{O}_X) \to
D^b_{\textit{Coh}}(\mathcal{O}_Y)$
is called a Fourier-Mukai functor.
Similarly for $D_{\textit{Coh}}$, $D^+_{\textit{Coh}}$, $D^-_{\textit{Coh}}$.
\end{enumerate}
\end{definition}
\begin{lemma}
\label{lemma-fourier-Mukai-QCoh}
Let $S$ be a scheme. Let $X$ and $Y$ be schemes over $S$.
Let $K \in D(\mathcal{O}_{X \times_S Y})$.
The corresponding Fourier-Mukai functor $\Phi_K$ sends
$D_\QCoh(\mathcal{O}_X)$ into $D_\QCoh(\mathcal{O}_Y)$
if $K$ is in $D_\QCoh(\mathcal{O}_{X \times_S Y})$ and $X \to S$ is
quasi-compact and quasi-separated.
\end{lemma}
\begin{proof}
This follows from the fact that derived pullback preserves
$D_\QCoh$
(Derived Categories of Schemes, Lemma
\ref{perfect-lemma-quasi-coherence-pullback}),
derived tensor products preserve $D_\QCoh$
(Derived Categories of Schemes, Lemma
\ref{perfect-lemma-quasi-coherence-tensor-product}),
the projection $\text{pr}_2 : X \times_S Y \to Y$ is
quasi-compact and quasi-separated
(Schemes, Lemmas
\ref{schemes-lemma-quasi-compact-preserved-base-change} and
\ref{schemes-lemma-separated-permanence}), and
total direct image along a quasi-separated and quasi-compact
morphism preserves $D_\QCoh$
(Derived Categories of Schemes, Lemma
\ref{perfect-lemma-quasi-coherence-direct-image}).
\end{proof}
\begin{lemma}
\label{lemma-compose-fourier-mukai}
Let $S$ be a scheme. Let $X, Y, Z$ be schemes over $S$. Assume
$X \to S$, $Y \to S$, and $Z \to S$ are quasi-compact and quasi-separated.
Let $K \in D_\QCoh(\mathcal{O}_{X \times_S Y})$.
Let $K' \in D_\QCoh(\mathcal{O}_{Y \times_S Z})$.
Consider the Fourier-Mukai functors
$\Phi_K : D_\QCoh(\mathcal{O}_X) \to D_\QCoh(\mathcal{O}_Y)$
and $\Phi_{K'} : D_\QCoh(\mathcal{O}_Y) \to D_\QCoh(\mathcal{O}_Z)$.
If $X$ and $Z$ are tor independent over $S$ and $Y \to S$ is flat,
then
$$
\Phi_{K'} \circ \Phi_K = \Phi_{K''} :
D_\QCoh(\mathcal{O}_X)
\longrightarrow
D_\QCoh(\mathcal{O}_Z)
$$
where
$$
K'' = R\text{pr}_{13, *}(
L\text{pr}_{12}^*K
\otimes_{\mathcal{O}_{X \times_S Y \times_S Z}}^\mathbf{L}
L\text{pr}_{23}^*K')
$$
in $D_\QCoh(\mathcal{O}_{X \times_S Z})$.
\end{lemma}
\begin{proof}
The statement makes sense by Lemma \ref{lemma-fourier-Mukai-QCoh}.
We are going to use
Derived Categories of Schemes, Lemmas
\ref{perfect-lemma-quasi-coherence-pullback},
\ref{perfect-lemma-quasi-coherence-tensor-product}, and
\ref{perfect-lemma-quasi-coherence-direct-image}
and Schemes, Lemmas
\ref{schemes-lemma-quasi-compact-preserved-base-change} and
\ref{schemes-lemma-separated-permanence}
without further mention.
By Derived Categories of Schemes, Lemma
\ref{perfect-lemma-flat-base-change-tor-independent}
we see that $X \times_S Y$ and $Y \times_S Z$ are tor independent
over $Y$. This means that we have base change for the cartesian diagram
$$
\xymatrix{
X \times_S Y \times_S Z \ar[d] \ar[r] &
Y \times_S Z \ar[d]^{p^{YZ}_Y} \\
X \times_S Y \ar[r]^{p^{XY}_Y} & Y
}
$$
for complexes with quasi-coherent cohomology sheaves, see
Derived Categories of Schemes, Lemma \ref{perfect-lemma-compare-base-change}.
Abbreviating $p^* = Lp^*$, $p_* = Rp_*$ and $\otimes = \otimes^\mathbf{L}$
we have for $M \in D_\QCoh(\mathcal{O}_X)$ the sequence of equalities
\begin{align*}
\Phi_{K'}(\Phi_K(M))
& =
p^{YZ}_{Z, *}(p^{YZ, *}_Y p^{XY}_{Y, *}(p^{XY, *}_X M \otimes K) \otimes K') \\
& =
p^{YZ}_{Z, *}(\text{pr}_{23, *} \text{pr}_{12}^*(p^{XY, *}_X M \otimes K)
\otimes K') \\
& =
p^{YZ}_{Z, *}(\text{pr}_{23, *}(\text{pr}_1^*M \otimes \text{pr}_{12}^*K)
\otimes K') \\
& =
p^{YZ}_{Z, *}(\text{pr}_{23, *}(\text{pr}_1^*M \otimes \text{pr}_{12}^*K
\otimes \text{pr}_{23}^*K')) \\
& =
\text{pr}_{3, *}(\text{pr}_1^*M \otimes \text{pr}_{12}^*K
\otimes \text{pr}_{23}^*K') \\
& =
p^{XZ}_{Z, *}\text{pr}_{13, *}(\text{pr}_1^*M \otimes \text{pr}_{12}^*K
\otimes \text{pr}_{23}^*K') \\
& =