-
Notifications
You must be signed in to change notification settings - Fork 152
/
flat.tex
14090 lines (12974 loc) · 551 KB
/
flat.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{More on Flatness}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter, we discuss some advanced results on flat modules and
flat morphisms of schemes and applications. Most of the results on flatness
can be found in the paper \cite{GruRay} by Raynaud and Gruson.
\medskip\noindent
Before reading this chapter we advise the reader to take a look
at the following results (this list also serves as a pointer to
previous results):
\begin{enumerate}
\item General discussion on flat modules in
Algebra, Section \ref{algebra-section-flat}.
\item The relationship between $\text{Tor}$-groups and flatness, see
Algebra, Section \ref{algebra-section-tor}.
\item Criteria for flatness, see
Algebra, Section \ref{algebra-section-criteria-flatness}
(Noetherian case),
Algebra, Section \ref{algebra-section-flatness-artinian}
(Artinian case),
Algebra, Section \ref{algebra-section-more-flatness-criteria}
(non-Noetherian case), and finally
More on Morphisms, Section \ref{more-morphisms-section-criterion-flat-fibres}.
\item Generic flatness, see
Algebra, Section \ref{algebra-section-generic-flatness}
and
Morphisms, Section \ref{morphisms-section-generic-flatness}.
\item Openness of the flat locus, see
Algebra, Section \ref{algebra-section-open-flat}
and
More on Morphisms, Section \ref{more-morphisms-section-open-flat}.
\item Flattening, see
More on Algebra, Sections
\ref{more-algebra-section-flattening},
\ref{more-algebra-section-flattening-artinian},
\ref{more-algebra-section-flattening-local-base},
\ref{more-algebra-section-flattening-local-source-base}, and
\ref{more-algebra-section-flattening-Noetherian-complete-local}.
\item Additional results in
More on Algebra, Sections \ref{more-algebra-section-descent-flatness-integral},
\ref{more-algebra-section-torsion-flat},
\ref{more-algebra-section-flat-finite}, and
\ref{more-algebra-section-blowup-flat}.
\end{enumerate}
As applications of the material on flatness we discuss the following
topics: a non-Noetherian version of Grothendieck's existence theorem,
blowing up and flatness, Nagata's theorem on compactifications,
the h topology, blow up squares and descent, weak normalization,
descent of vector bundles in positive characteristic, and
the local structure of perfect complexes in the h topology.
\section{Lemmas on \'etale localization}
\label{section-etale-localization}
\noindent
In this section we list some lemmas on \'etale localization which will be
useful later in this chapter. Please skip this section on a first reading.
\begin{lemma}
\label{lemma-lift-etale}
Let $i : Z \to X$ be a closed immersion of affine schemes.
Let $Z' \to Z$ be an \'etale morphism with $Z'$ affine.
Then there exists an \'etale morphism $X' \to X$ with $X'$
affine such that $Z' \cong Z \times_X X'$ as schemes over $Z$.
\end{lemma}
\begin{proof}
See
Algebra, Lemma \ref{algebra-lemma-lift-etale}.
\end{proof}
\begin{lemma}
\label{lemma-etale-at-point}
Let
$$
\xymatrix{
X \ar[d] & X' \ar[l] \ar[d] \\
S & S' \ar[l]
}
$$
be a commutative diagram of schemes with $X' \to X$ and $S' \to S$ \'etale.
Let $s' \in S'$ be a point. Then
$$
X' \times_{S'} \Spec(\mathcal{O}_{S', s'})
\longrightarrow
X \times_S \Spec(\mathcal{O}_{S', s'})
$$
is \'etale.
\end{lemma}
\begin{proof}
This is true because $X' \to X_{S'}$ is \'etale as a morphism of
schemes \'etale over $X$, see
Morphisms, Lemma \ref{morphisms-lemma-etale-permanence}
and the base change of an \'etale morphism is \'etale, see
Morphisms, Lemma \ref{morphisms-lemma-base-change-etale}.
\end{proof}
\begin{lemma}
\label{lemma-etale-flat-up-down}
Let $X \to T \to S$ be morphisms of schemes with $T \to S$ \'etale.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Let $x \in X$ be a point. Then
$$
\mathcal{F}\text{ flat over }S\text{ at }x
\Leftrightarrow
\mathcal{F}\text{ flat over }T\text{ at }x
$$
In particular $\mathcal{F}$ is flat over $S$ if and only if $\mathcal{F}$
is flat over $T$.
\end{lemma}
\begin{proof}
As an \'etale morphism is a flat morphism (see
Morphisms, Lemma \ref{morphisms-lemma-etale-flat})
the implication ``$\Leftarrow$'' follows from
Algebra, Lemma \ref{algebra-lemma-composition-flat}.
For the converse assume that $\mathcal{F}$ is flat at $x$ over $S$.
Denote $\tilde x \in X \times_S T$ the point lying over $x$ in $X$
and over the image of $x$ in $T$ in $T$.
Then $(X \times_S T \to X)^*\mathcal{F}$ is flat at $\tilde x$ over $T$
via $\text{pr}_2 : X \times_S T \to T$, see
Morphisms, Lemma \ref{morphisms-lemma-base-change-module-flat}.
The diagonal $\Delta_{T/S} : T \to T \times_S T$ is an open immersion;
combine
Morphisms, Lemmas \ref{morphisms-lemma-diagonal-unramified-morphism} and
\ref{morphisms-lemma-etale-smooth-unramified}.
So $X$ is identified with open subscheme of $X \times_S T$,
the restriction of $\text{pr}_2$ to this open is the given morphism $X \to T$,
the point $\tilde x$ corresponds to the point $x$ in this open, and
$(X \times_S T \to X)^*\mathcal{F}$ restricted to this open is $\mathcal{F}$.
Whence we see that $\mathcal{F}$ is flat at $x$ over $T$.
\end{proof}
\begin{lemma}
\label{lemma-etale-flat-up-down-local-ring}
Let $T \to S$ be an \'etale morphism. Let $t \in T$ with image $s \in S$.
Let $M$ be a $\mathcal{O}_{T, t}$-module. Then
$$
M\text{ flat over }\mathcal{O}_{S, s}
\Leftrightarrow
M\text{ flat over }\mathcal{O}_{T, t}.
$$
\end{lemma}
\begin{proof}
We may replace $S$ by an affine neighbourhood of $s$ and after that
$T$ by an affine neighbourhood of $t$.
Set $\mathcal{F} = (\Spec(\mathcal{O}_{T, t}) \to T)_*\widetilde M$.
This is a quasi-coherent sheaf (see
Schemes, Lemma \ref{schemes-lemma-push-forward-quasi-coherent}
or argue directly)
on $T$ whose stalk at $t$ is $M$ (details omitted).
Apply
Lemma \ref{lemma-etale-flat-up-down}.
\end{proof}
\begin{lemma}
\label{lemma-flat-up-down-henselization}
Let $S$ be a scheme and $s \in S$ a point. Denote $\mathcal{O}_{S, s}^h$
(resp.\ $\mathcal{O}_{S, s}^{sh}$) the henselization (resp.\ strict
henselization), see
Algebra, Definition \ref{algebra-definition-henselization}.
Let $M^{sh}$ be a $\mathcal{O}_{S, s}^{sh}$-module.
The following are equivalent
\begin{enumerate}
\item $M^{sh}$ is flat over $\mathcal{O}_{S, s}$,
\item $M^{sh}$ is flat over $\mathcal{O}_{S, s}^h$, and
\item $M^{sh}$ is flat over $\mathcal{O}_{S, s}^{sh}$.
\end{enumerate}
If $M^{sh} = M^h \otimes_{\mathcal{O}_{S, s}^h} \mathcal{O}_{S, s}^{sh}$
this is also equivalent to
\begin{enumerate}
\item[(4)] $M^h$ is flat over $\mathcal{O}_{S, s}$, and
\item[(5)] $M^h$ is flat over $\mathcal{O}_{S, s}^h$.
\end{enumerate}
If $M^h = M \otimes_{\mathcal{O}_{S, s}} \mathcal{O}_{S, s}^h$
this is also equivalent to
\begin{enumerate}
\item[(6)] $M$ is flat over $\mathcal{O}_{S, s}$.
\end{enumerate}
\end{lemma}
\begin{proof}
By More on Algebra, Lemma
\ref{more-algebra-lemma-dumb-properties-henselization}
the local ring maps
$\mathcal{O}_{S, s} \to \mathcal{O}_{S, s}^h \to \mathcal{O}_{S, s}^{sh}$
are faithfully flat.
Hence (3) $\Rightarrow$ (2) $\Rightarrow$ (1) and
(5) $\Rightarrow$ (4) follow from
Algebra, Lemma \ref{algebra-lemma-composition-flat}.
By faithful flatness the equivalences (6) $\Leftrightarrow$ (5) and
(5) $\Leftrightarrow$ (3) follow from
Algebra, Lemma \ref{algebra-lemma-flatness-descends}.
Thus it suffices to show that
(1) $\Rightarrow$ (2) $\Rightarrow$ (3) and
(4) $\Rightarrow$ (5).
To prove these we may assume $S$ is an affine scheme.
\medskip\noindent
Assume (1). By
Lemma \ref{lemma-etale-flat-up-down-local-ring}
we see that $M^{sh}$ is flat over $\mathcal{O}_{T, t}$ for
any \'etale neighbourhood $(T, t) \to (S, s)$. Since $\mathcal{O}_{S, s}^h$
and $\mathcal{O}_{S, s}^{sh}$ are directed colimits of local rings
of the form $\mathcal{O}_{T, t}$ (see
Algebra, Lemmas \ref{algebra-lemma-henselization-different}
and \ref{algebra-lemma-strict-henselization-different})
we conclude that $M^{sh}$ is flat over $\mathcal{O}_{S, s}^h$
and $\mathcal{O}_{S, s}^{sh}$ by
Algebra, Lemma \ref{algebra-lemma-colimit-rings-flat}.
Thus (1) implies (2) and (3). Of course this implies also
(2) $\Rightarrow$ (3) by replacing $\mathcal{O}_{S, s}$ by
$\mathcal{O}_{S, s}^h$. The same argument applies to prove
(4) $\Rightarrow$ (5).
\end{proof}
\begin{lemma}
\label{lemma-tor-amplitude-up-down-henselization}
Let $S$ be a scheme and $s \in S$ a point. Denote $\mathcal{O}_{S, s}^h$
(resp.\ $\mathcal{O}_{S, s}^{sh}$) the henselization (resp.\ strict
henselization), see
Algebra, Definition \ref{algebra-definition-henselization}.
Let $M^{sh}$ be an object of $D(\mathcal{O}_{S, s}^{sh})$.
Let $a, b \in \mathbf{Z}$.
The following are equivalent
\begin{enumerate}
\item $M^{sh}$ has tor amplitude in $[a, b]$ over $\mathcal{O}_{S, s}$,
\item $M^{sh}$ has tor amplitude in $[a, b]$ over $\mathcal{O}_{S, s}^h$, and
\item $M^{sh}$ has tor amplitude in $[a, b]$ over $\mathcal{O}_{S, s}^{sh}$.
\end{enumerate}
If $M^{sh} =
M^h \otimes_{\mathcal{O}_{S, s}^h}^\mathbf{L} \mathcal{O}_{S, s}^{sh}$
for $M^h \in D(\mathcal{O}_{S, s}^h)$ this is also equivalent to
\begin{enumerate}
\item[(4)] $M^h$ has tor amplitude in $[a, b]$ over $\mathcal{O}_{S, s}$, and
\item[(5)] $M^h$ has tor amplitude in $[a, b]$ over $\mathcal{O}_{S, s}^h$.
\end{enumerate}
If $M^h = M \otimes_{\mathcal{O}_{S, s}}^\mathbf{L} \mathcal{O}_{S, s}^h$
for $M \in D(\mathcal{O}_{S, s})$
this is also equivalent to
\begin{enumerate}
\item[(6)] $M$ has tor amplitude in $[a, b]$ over $\mathcal{O}_{S, s}$.
\end{enumerate}
\end{lemma}
\begin{proof}
By More on Algebra, Lemma
\ref{more-algebra-lemma-dumb-properties-henselization}
the local ring maps
$\mathcal{O}_{S, s} \to \mathcal{O}_{S, s}^h \to \mathcal{O}_{S, s}^{sh}$
are faithfully flat.
Hence (3) $\Rightarrow$ (2) $\Rightarrow$ (1) and
(5) $\Rightarrow$ (4) follow from
More on Algebra, Lemma \ref{more-algebra-lemma-flat-push-tor-amplitude}.
By faithful flatness the equivalences (6) $\Leftrightarrow$ (5) and
(5) $\Leftrightarrow$ (3) follow from
More on Algebra, Lemma \ref{more-algebra-lemma-flat-descent-tor-amplitude}.
Thus it suffices to show that
(1) $\Rightarrow$ (3), (2) $\Rightarrow$ (3), and (4) $\Rightarrow$ (5).
\medskip\noindent
Assume (1). In particular $M^{sh}$ has vanishing cohomology
in degrees $< a$ and $> b$. Hence we can represent $M^{sh}$ by a complex
$P^\bullet$ of free $\mathcal{O}_{X, x}^{sh}$-modules with
$P^i = 0$ for $i > b$
(see for example the very general
Derived Categories, Lemma \ref{derived-lemma-subcategory-left-resolution}).
Note that $P^n$ is flat over $\mathcal{O}_{S, s}$ for all $n$.
Consider $\Coker(d_P^{a - 1})$. By More on Algebra, Lemma
\ref{more-algebra-lemma-last-one-flat}
this is a flat $\mathcal{O}_{S, s}$-module.
Hence by Lemma \ref{lemma-flat-up-down-henselization}
this is a flat $\mathcal{O}_{S, s}^{sh}$-module.
Thus $\tau_{\geq a}P^\bullet$ is a complex of
flat $\mathcal{O}_{S, s}^{sh}$-modules representing $M^{sh}$
in $D(\mathcal{O}_{S, s}^{sh}$ and we find that
$M^{sh}$ has tor amplitude in $[a, b]$, see
More on Algebra, Lemma \ref{more-algebra-lemma-tor-amplitude}.
Thus (1) implies (3). Of course this implies also
(2) $\Rightarrow$ (3) by replacing $\mathcal{O}_{S, s}$ by
$\mathcal{O}_{S, s}^h$. The same argument applies to prove
(4) $\Rightarrow$ (5).
\end{proof}
\begin{lemma}
\label{lemma-finite-flat-weak-assassin-up-down}
Let $g : T \to S$ be a finite flat morphism of schemes.
Let $\mathcal{G}$ be a quasi-coherent $\mathcal{O}_S$-module.
Let $t \in T$ be a point with image $s \in S$. Then
$$
t \in \text{WeakAss}(g^*\mathcal{G})
\Leftrightarrow
s \in \text{WeakAss}(\mathcal{G})
$$
\end{lemma}
\begin{proof}
The implication ``$\Leftarrow$'' follows immediately from
Divisors, Lemma \ref{divisors-lemma-weakly-ass-pullback}.
Assume $t \in \text{WeakAss}(g^*\mathcal{G})$.
Let $\Spec(A) \subset S$ be an affine open neighbourhood of $s$.
Let $\mathcal{G}$ be the quasi-coherent sheaf associated to the $A$-module $M$.
Let $\mathfrak p \subset A$ be the prime ideal corresponding to $s$.
As $g$ is finite flat we have $g^{-1}(\Spec(A)) = \Spec(B)$
for some finite flat $A$-algebra $B$. Note that
$g^*\mathcal{G}$ is the quasi-coherent $\mathcal{O}_{\Spec(B)}$-module
associated to the $B$-module $M \otimes_A B$ and $g_*g^*\mathcal{G}$ is the
quasi-coherent $\mathcal{O}_{\Spec(A)}$-module associated to the
$A$-module $M \otimes_A B$. By
Algebra, Lemma \ref{algebra-lemma-finite-flat-local}
we have $B_{\mathfrak p} \cong A_{\mathfrak p}^{\oplus n}$
for some integer $n \geq 0$. Note that $n \geq 1$ as we assumed there
exists at least one point of $T$ lying over $s$. Hence we see by
looking at stalks that
$$
s \in \text{WeakAss}(\mathcal{G})
\Leftrightarrow
s \in \text{WeakAss}(g_*g^*\mathcal{G})
$$
Now the assumption that $t \in \text{WeakAss}(g^*\mathcal{G})$
implies that $s \in \text{WeakAss}(g_*g^*\mathcal{G})$ by
Divisors, Lemma \ref{divisors-lemma-weakly-associated-finite}
and hence by the above $s \in \text{WeakAss}(\mathcal{G})$.
\end{proof}
\begin{lemma}
\label{lemma-etale-weak-assassin-up-down}
Let $h : U \to S$ be an \'etale morphism of schemes.
Let $\mathcal{G}$ be a quasi-coherent $\mathcal{O}_S$-module.
Let $u \in U$ be a point with image $s \in S$. Then
$$
u \in \text{WeakAss}(h^*\mathcal{G})
\Leftrightarrow
s \in \text{WeakAss}(\mathcal{G})
$$
\end{lemma}
\begin{proof}
After replacing $S$ and $U$ by affine neighbourhoods of $s$ and $u$
we may assume that $g$ is a standard \'etale morphism of affines, see
Morphisms, Lemma \ref{morphisms-lemma-etale-locally-standard-etale}.
Thus we may assume $S = \Spec(A)$ and
$X = \Spec(A[x, 1/g]/(f))$, where $f$ is monic and $f'$
is invertible in $A[x, 1/g]$.
Note that $A[x, 1/g]/(f) = (A[x]/(f))_g$ is also the localization
of the finite free $A$-algebra $A[x]/(f)$. Hence we may think of
$U$ as an open subscheme of the scheme $T = \Spec(A[x]/(f))$
which is finite locally free over $S$. This reduces us to
Lemma \ref{lemma-finite-flat-weak-assassin-up-down}
above.
\end{proof}
\begin{lemma}
\label{lemma-weakly-associated-henselization}
Let $S$ be a scheme and $s \in S$ a point. Denote $\mathcal{O}_{S, s}^h$
(resp.\ $\mathcal{O}_{S, s}^{sh}$) the henselization (resp.\ strict
henselization), see
Algebra, Definition \ref{algebra-definition-henselization}.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_S$-module.
The following are equivalent
\begin{enumerate}
\item $s$ is a weakly associated point of $\mathcal{F}$,
\item $\mathfrak m_s$ is a weakly associated prime of $\mathcal{F}_s$,
\item $\mathfrak m_s^h$ is a weakly associated prime of
$\mathcal{F}_s \otimes_{\mathcal{O}_{S, s}} \mathcal{O}_{S, s}^h$, and
\item $\mathfrak m_s^{sh}$ is a weakly associated prime of
$\mathcal{F}_s \otimes_{\mathcal{O}_{S, s}} \mathcal{O}_{S, s}^{sh}$.
\end{enumerate}
\end{lemma}
\begin{proof}
The equivalence of (1) and (2) is the definition, see
Divisors, Definition \ref{divisors-definition-weakly-associated}.
The implications (2) $\Rightarrow$ (3) $\Rightarrow$ (4)
follows from Divisors, Lemma \ref{divisors-lemma-weakly-ass-pullback}
applied to the flat (More on Algebra, Lemma
\ref{more-algebra-lemma-dumb-properties-henselization})
morphisms
$$
\Spec(\mathcal{O}_{S, s}^{sh}) \to
\Spec(\mathcal{O}_{S, s}^h) \to
\Spec(\mathcal{O}_{S, s})
$$
and the closed points. To prove (4) $\Rightarrow$ (2) we may replace
$S$ by an affine neighbourhood. Suppose that
$x \in \mathcal{F}_s \otimes_{\mathcal{O}_{S, s}} \mathcal{O}_{S, s}^{sh}$
is an element whose annihilator has radical equal to $\mathfrak m_s^{sh}$.
(See Algebra, Lemma \ref{algebra-lemma-weakly-ass-local}.)
Since $\mathcal{O}_{S, s}^{sh}$ is equal to the limit
of $\mathcal{O}_{U, u}$ over \'etale neighbourhoods
$f : (U, u) \to (S, s)$ by Algebra, Lemma
\ref{algebra-lemma-strict-henselization-different}
we may assume that $x$ is the image of some
$x' \in \mathcal{F}_s \otimes_{\mathcal{O}_{S, s}} \mathcal{O}_{U, u}$.
The local ring map $\mathcal{O}_{U, u} \to \mathcal{O}_{S, s}^{sh}$
is faithfully flat (as it is the strict henselization), hence
universally injective
(Algebra, Lemma \ref{algebra-lemma-faithfully-flat-universally-injective}).
It follows that the annihilator of $x'$ is the inverse image of the
annihilator of $x$. Hence the radical of this annihilator
is equal to $\mathfrak m_u$.
Thus $u$ is a weakly associated point of $f^*\mathcal{F}$.
By Lemma \ref{lemma-etale-weak-assassin-up-down}
we see that $s$ is a weakly associated point of $\mathcal{F}$.
\end{proof}
\section{The local structure of a finite type module}
\label{section-local-structure-module}
\noindent
The key technical lemma that makes a lot of the arguments in this
chapter work is the geometric
Lemma \ref{lemma-elementary-devissage}.
\begin{lemma}
\label{lemma-sheaf-lives-on-subscheme}
Let $f : X \to S$ be a finite type morphism of affine schemes.
Let $\mathcal{F}$ be a finite type quasi-coherent $\mathcal{O}_X$-module.
Let $x \in X$ with image $s = f(x)$ in $S$.
Set $\mathcal{F}_s = \mathcal{F}|_{X_s}$.
Then there exist a closed immersion $i : Z \to X$ of finite presentation,
and a quasi-coherent finite type $\mathcal{O}_Z$-module $\mathcal{G}$
such that $i_*\mathcal{G} = \mathcal{F}$ and
$Z_s = \text{Supp}(\mathcal{F}_s)$.
\end{lemma}
\begin{proof}
Say the morphism $f : X \to S$ is given by the ring map
$A \to B$ and that $\mathcal{F}$ is the quasi-coherent sheaf
associated to the $B$-module $M$. By
Morphisms, Lemma \ref{morphisms-lemma-locally-finite-type-characterize}
we know that $A \to B$ is a finite type ring map, and by
Properties, Lemma \ref{properties-lemma-finite-type-module}
we know that $M$ is a finite $B$-module. In particular the
support of $\mathcal{F}$ is the closed subscheme of $\Spec(B)$
cut out by the annihilator
$I = \{x \in B \mid xm = 0\ \forall m \in M\}$ of $M$, see
Algebra, Lemma \ref{algebra-lemma-support-closed}.
Let $\mathfrak q \subset B$ be the prime ideal corresponding to $x$
and let $\mathfrak p \subset A$ be the prime ideal corresponding to $s$.
Note that $X_s = \Spec(B \otimes_A \kappa(\mathfrak p))$ and
that $\mathcal{F}_s$ is the quasi-coherent sheaf associated to the
$B \otimes_A \kappa(\mathfrak p)$ module $M \otimes_A \kappa(\mathfrak p)$. By
Morphisms, Lemma \ref{morphisms-lemma-support-finite-type}
the support of $\mathcal{F}_s$ is equal to
$V(I(B \otimes_A \kappa(\mathfrak p)))$. Since
$B \otimes_A \kappa(\mathfrak p)$ is of finite type over $\kappa(\mathfrak p)$
there exist finitely many elements $f_1, \ldots, f_m \in I$
such that
$$
I(B \otimes_A \kappa(\mathfrak p)) =
(f_1, \ldots, f_n)(B \otimes_A \kappa(\mathfrak p)).
$$
Denote $i : Z \to X$ the closed subscheme cut out by
$(f_1, \ldots, f_m)$, in a formula $Z = \Spec(B/(f_1, \ldots, f_m))$.
Since $M$ is annihilated by $I$ we can think of $M$ as an
$B/(f_1, \ldots, f_m)$-module. In other words, $\mathcal{F}$ is the
pushforward of a finite type module on $Z$.
As $Z_s = \text{Supp}(\mathcal{F}_s)$ by construction, this
proves the lemma.
\end{proof}
\begin{lemma}
\label{lemma-elementary-devissage}
Let $f : X \to S$ be morphism of schemes which is locally of finite type.
Let $\mathcal{F}$ be a finite type quasi-coherent $\mathcal{O}_X$-module.
Let $x \in X$ with image $s = f(x)$ in $S$.
Set $\mathcal{F}_s = \mathcal{F}|_{X_s}$ and
$n = \dim_x(\text{Supp}(\mathcal{F}_s))$.
Then we can construct
\begin{enumerate}
\item elementary \'etale neighbourhoods $g : (X', x') \to (X, x)$,
$e : (S', s') \to (S, s)$,
\item a commutative diagram
$$
\xymatrix{
X \ar[dd]_f & X' \ar[dd] \ar[l]^g & Z' \ar[l]^i \ar[d]^\pi \\
& & Y' \ar[d]^h \\
S & S' \ar[l]_e & S' \ar@{=}[l]
}
$$
\item a point $z' \in Z'$ with $i(z') = x'$, $y' = \pi(z')$, $h(y') = s'$,
\item a finite type quasi-coherent $\mathcal{O}_{Z'}$-module $\mathcal{G}$,
\end{enumerate}
such that the following properties hold
\begin{enumerate}
\item $X'$, $Z'$, $Y'$, $S'$ are affine schemes,
\item $i$ is a closed immersion of finite presentation,
\item $i_*(\mathcal{G}) \cong g^*\mathcal{F}$,
\item $\pi$ is finite and $\pi^{-1}(\{y'\}) = \{z'\}$,
\item the extension $\kappa(y')/\kappa(s')$ is purely transcendental,
\item $h$ is smooth of relative dimension $n$
with geometrically integral fibres.
\end{enumerate}
\end{lemma}
\begin{proof}
Let $V \subset S$ be an affine neighbourhood of $s$.
Let $U \subset f^{-1}(V)$ be an affine neighbourhood of $x$.
Then it suffices to prove the lemma for $f|_U : U \to V$ and
$\mathcal{F}|_U$. Hence in the rest of the proof we assume that
$X$ and $S$ are affine.
\medskip\noindent
First, suppose that $X_s = \text{Supp}(\mathcal{F}_s)$, in particular
$n = \dim_x(X_s)$. Apply
More on Morphisms,
Lemmas \ref{more-morphisms-lemma-local-local-structure-finite-type} and
\ref{more-morphisms-lemma-local-local-structure-finite-type-affine}.
This gives us a commutative diagram
$$
\xymatrix{
X \ar[dd] & X' \ar[l]^g \ar[d]^\pi \\
& Y' \ar[d]^h \\
S & S' \ar[l]_e
}
$$
and point $x' \in X'$. We set $Z' = X'$, $i = \text{id}$, and
$\mathcal{G} = g^*\mathcal{F}$ to obtain a solution in this case.
\medskip\noindent
In general choose a closed immersion $Z \to X$ and a sheaf
$\mathcal{G}$ on $Z$ as in
Lemma \ref{lemma-sheaf-lives-on-subscheme}.
Applying the result of the previous paragraph to $Z \to S$ and
$\mathcal{G}$ we obtain a diagram
$$
\xymatrix{
X \ar[dd]_f & Z \ar[l] \ar[dd]_{f|_Z} & Z' \ar[l]^g \ar[d]^\pi \\
& & Y' \ar[d]^h \\
S & S \ar@{=}[l] & S' \ar[l]_e
}
$$
and point $z' \in Z'$ satisfying all the required properties.
We will use
Lemma \ref{lemma-lift-etale}
to embed $Z'$ into a scheme \'etale over $X$. We cannot apply the lemma directly
as we want $X'$ to be a scheme over $S'$. Instead we
consider the morphisms
$$
\xymatrix{
Z' \ar[r] & Z \times_S S' \ar[r] & X \times_S S'
}
$$
The first morphism is \'etale by
Morphisms, Lemma \ref{morphisms-lemma-etale-permanence}.
The second is a closed immersion as a base change of a closed immersion.
Finally, as $X$, $S$, $S'$, $Z$, $Z'$ are all affine we may apply
Lemma \ref{lemma-lift-etale}
to get an \'etale morphism of affine schemes $X' \to X \times_S S'$ such that
$$
Z' = (Z \times_S S') \times_{(X \times_S S')} X' = Z \times_X X'.
$$
As $Z \to X$ is a closed immersion of finite presentation, so is $Z' \to X'$.
Let $x' \in X'$ be the point corresponding to $z' \in Z'$.
Then the completed diagram
$$
\xymatrix{
X \ar[dd] & X' \ar[dd] \ar[l] & Z' \ar[l]^i \ar[d]^\pi \\
& & Y' \ar[d]^h \\
S & S' \ar[l]_e & S' \ar@{=}[l]
}
$$
is a solution of the original problem.
\end{proof}
\begin{lemma}
\label{lemma-devissage-finite-presentation}
Assumptions and notation as in
Lemma \ref{lemma-elementary-devissage}.
If $f$ is locally of finite presentation
then $\pi$ is of finite presentation.
In this case the following are equivalent
\begin{enumerate}
\item $\mathcal{F}$ is an $\mathcal{O}_X$-module of finite presentation
in a neighbourhood of $x$,
\item $\mathcal{G}$ is an $\mathcal{O}_{Z'}$-module of finite presentation
in a neighbourhood of $z'$, and
\item $\pi_*\mathcal{G}$ is an $\mathcal{O}_{Y'}$-module of
finite presentation in a neighbourhood of $y'$.
\end{enumerate}
Still assuming $f$ locally of finite presentation the following are
equivalent to each other
\begin{enumerate}
\item[(a)] $\mathcal{F}_x$ is an $\mathcal{O}_{X, x}$-module of finite
presentation,
\item[(b)] $\mathcal{G}_{z'}$ is an $\mathcal{O}_{Z', z'}$-module of
finite presentation, and
\item[(c)] $(\pi_*\mathcal{G})_{y'}$ is an $\mathcal{O}_{Y', y'}$-module
of finite presentation.
\end{enumerate}
\end{lemma}
\begin{proof}
Assume $f$ locally of finite presentation. Then $Z' \to S$ is locally
of finite presentation as a composition of such, see
Morphisms, Lemma \ref{morphisms-lemma-composition-finite-presentation}.
Note that $Y' \to S$ is also locally of finite presentation as a composition
of a smooth and an \'etale morphism. Hence
Morphisms, Lemma \ref{morphisms-lemma-finite-presentation-permanence}
implies $\pi$ is locally of finite presentation.
Since $\pi$ is finite we conclude that it is also separated and
quasi-compact, hence $\pi$ is actually of finite presentation.
\medskip\noindent
To prove the equivalence of (1), (2), and (3) we also consider:
(4) $g^*\mathcal{F}$ is a $\mathcal{O}_{X'}$-module of finite presentation
in a neighbourhood of $x'$. The pullback of a module of finite presentation
is of finite presentation, see
Modules, Lemma \ref{modules-lemma-pullback-finite-presentation}.
Hence (1) $\Rightarrow$ (4).
The \'etale morphism $g$ is open, see
Morphisms, Lemma \ref{morphisms-lemma-etale-open}.
Hence for any open neighbourhood $U' \subset X'$ of $x'$, the image
$g(U')$ is an open neighbourhood of $x$ and the map
$\{U' \to g(U')\}$ is an \'etale covering. Thus (4) $\Rightarrow$ (1) by
Descent, Lemma \ref{descent-lemma-finite-presentation-descends}.
Using
Descent, Lemma \ref{descent-lemma-finite-finitely-presented-module}
and some easy topological arguments (see
More on Morphisms,
Lemma \ref{more-morphisms-lemma-finite-morphism-single-point-in-fibre})
we see that
(4) $\Leftrightarrow$ (2) $\Leftrightarrow$ (3).
\medskip\noindent
To prove the equivalence of (a), (b), (c) consider the ring maps
$$
\mathcal{O}_{X, x} \to
\mathcal{O}_{X', x'} \to
\mathcal{O}_{Z', z'} \leftarrow
\mathcal{O}_{Y', y'}
$$
The first ring map is faithfully flat. Hence
$\mathcal{F}_x$ is of finite presentation over $\mathcal{O}_{X, x}$
if and only if $g^*\mathcal{F}_{x'}$ is of finite presentation over
$\mathcal{O}_{X', x'}$, see
Algebra, Lemma \ref{algebra-lemma-descend-properties-modules}.
The second ring map is surjective (hence finite) and
finitely presented by assumption, hence
$g^*\mathcal{F}_{x'}$ is of finite presentation over $\mathcal{O}_{X', x'}$
if and only if $\mathcal{G}_{z'}$ is of finite presentation over
$\mathcal{O}_{Z', z'}$, see
Algebra, Lemma \ref{algebra-lemma-finite-finitely-presented-extension}.
Because $\pi$ is finite, of finite presentation, and
$\pi^{-1}(\{y'\}) = \{x'\}$ the ring homomorphism
$\mathcal{O}_{Y', y'} \leftarrow \mathcal{O}_{Z', z'}$ is finite
and of finite presentation, see
More on Morphisms,
Lemma \ref{more-morphisms-lemma-finite-morphism-single-point-in-fibre}.
Hence $\mathcal{G}_{z'}$ is of finite presentation over $\mathcal{O}_{Z', z'}$
if and only if $\pi_*\mathcal{G}_{y'}$ is of finite presentation over
$\mathcal{O}_{Y', y'}$, see
Algebra, Lemma \ref{algebra-lemma-finite-finitely-presented-extension}.
\end{proof}
\begin{lemma}
\label{lemma-devissage-flat}
Assumptions and notation as in
Lemma \ref{lemma-elementary-devissage}.
The following are equivalent
\begin{enumerate}
\item $\mathcal{F}$ is flat over $S$ in a neighbourhood of $x$,
\item $\mathcal{G}$ is flat over $S'$ in a neighbourhood of $z'$, and
\item $\pi_*\mathcal{G}$ is flat over $S'$ in a neighbourhood of $y'$.
\end{enumerate}
The following are equivalent also
\begin{enumerate}
\item[(a)] $\mathcal{F}_x$ is flat over $\mathcal{O}_{S, s}$,
\item[(b)] $\mathcal{G}_{z'}$ is flat over $\mathcal{O}_{S', s'}$, and
\item[(c)] $(\pi_*\mathcal{G})_{y'}$ is flat over $\mathcal{O}_{S', s'}$.
\end{enumerate}
\end{lemma}
\begin{proof}
To prove the equivalence of (1), (2), and (3) we also consider:
(4) $g^*\mathcal{F}$ is flat over $S$ in a neighbourhood of $x'$.
We will use
Lemma \ref{lemma-etale-flat-up-down}
to equate flatness over $S$ and $S'$ without further mention.
The \'etale morphism $g$ is flat and open, see
Morphisms, Lemma \ref{morphisms-lemma-etale-open}.
Hence for any open neighbourhood $U' \subset X'$ of $x'$, the image
$g(U')$ is an open neighbourhood of $x$ and the map
$U' \to g(U')$ is surjective and flat.
Thus (4) $\Leftrightarrow$ (1) by
Morphisms, Lemma \ref{morphisms-lemma-flat-permanence}.
Note that
$$
\Gamma(X', g^*\mathcal{F}) =
\Gamma(Z', \mathcal{G}) =
\Gamma(Y', \pi_*\mathcal{G})
$$
Hence the flatness of $g^*\mathcal{F}$, $\mathcal{G}$ and $\pi_*\mathcal{G}$
over $S'$ are all equivalent (this uses that $X'$, $Z'$, $Y'$, and
$S'$ are all affine). Some omitted topological arguments (compare
More on Morphisms,
Lemma \ref{more-morphisms-lemma-finite-morphism-single-point-in-fibre})
regarding affine neighbourhoods now show that
(4) $\Leftrightarrow$ (2) $\Leftrightarrow$ (3).
\medskip\noindent
To prove the equivalence of (a), (b), (c) consider the commutative diagram
of local ring maps
$$
\xymatrix{
\mathcal{O}_{X', x'} \ar[r]_\iota &
\mathcal{O}_{Z', z'} &
\mathcal{O}_{Y', y'} \ar[l]^\alpha &
\mathcal{O}_{S', s'} \ar[l]^\beta \\
\mathcal{O}_{X, x} \ar[u]^\gamma & & &
\mathcal{O}_{S, s} \ar[lll]_\varphi \ar[u]_\epsilon
}
$$
We will use
Lemma \ref{lemma-etale-flat-up-down-local-ring}
to equate flatness over $\mathcal{O}_{S, s}$ and $\mathcal{O}_{S', s'}$
without further mention.
The map $\gamma$ is faithfully flat. Hence
$\mathcal{F}_x$ is flat over $\mathcal{O}_{S, s}$
if and only if $g^*\mathcal{F}_{x'}$ is flat over
$\mathcal{O}_{S', s'}$, see
Algebra, Lemma \ref{algebra-lemma-flatness-descends-more-general}.
As $\mathcal{O}_{S', s'}$-modules the modules
$g^*\mathcal{F}_{x'}$, $\mathcal{G}_{z'}$, and
$\pi_*\mathcal{G}_{y'}$ are all isomorphic, see
More on Morphisms,
Lemma \ref{more-morphisms-lemma-finite-morphism-single-point-in-fibre}.
This finishes the proof.
\end{proof}
\section{One step d\'evissage}
\label{section-one-step-devissage}
\noindent
In this section we explain what is a one step d\'evissage of a
module. A one step d\'evissage exist \'etale locally on base and target.
We discuss base change, Zariski shrinking and \'etale localization of
a one step d\'evissage.
\begin{definition}
\label{definition-one-step-devissage}
Let $S$ be a scheme.
Let $X$ be locally of finite type over $S$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module of finite type.
Let $s \in S$ be a point.
A {\it one step d\'evissage of $\mathcal{F}/X/S$ over $s$}
is given by morphisms of schemes over $S$
$$
\xymatrix{
X & Z \ar[l]_i \ar[r]^\pi & Y
}
$$
and a quasi-coherent $\mathcal{O}_Z$-module $\mathcal{G}$ of finite type
such that
\begin{enumerate}
\item $X$, $S$, $Z$ and $Y$ are affine,
\item $i$ is a closed immersion of finite presentation,
\item $\mathcal{F} \cong i_*\mathcal{G}$,
\item $\pi$ is finite, and
\item the structure morphism $Y \to S$ is smooth with
geometrically irreducible fibres of
dimension $\dim(\text{Supp}(\mathcal{F}_s))$.
\end{enumerate}
In this case we say $(Z, Y, i, \pi, \mathcal{G})$ is a one step
d\'evissage of $\mathcal{F}/X/S$ over $s$.
\end{definition}
\noindent
Note that such a one step d\'evissage can only exist if $X$ and $S$
are affine. In the definition above we only require $X$ to be
(locally) of finite type over $S$ and we continue working in this
setting below. In \cite{GruRay} the authors use consistently the setup
where $X \to S$ is locally of finite presentation and $\mathcal{F}$
quasi-coherent $\mathcal{O}_X$-module of finite type. The advantage
of this choice is that it ``makes sense'' to ask for $\mathcal{F}$ to
be of finite presentation as an $\mathcal{O}_X$-module, whereas in our
setting it ``does not make sense''. Please see
More on Morphisms, Section
\ref{more-morphisms-section-finite-type-finite-presentation}
for a discussion; the observations made there show that in our setup
we may consider the condition of $\mathcal{F}$ being ``locally of finite
presentation relative to $S$'', and we could work consistently with this
notion. Instead however, we will rely on the results of
Lemma \ref{lemma-devissage-finite-presentation}
and the observations in
Remark \ref{remark-finite-presentation}
to deal with this issue in an ad hoc fashion whenever it comes up.
\begin{definition}
\label{definition-one-step-devissage-at-x}
Let $S$ be a scheme.
Let $X$ be locally of finite type over $S$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module of finite type.
Let $x \in X$ be a point with image $s$ in $S$.
A {\it one step d\'evissage of $\mathcal{F}/X/S$ at $x$}
is a system $(Z, Y, i, \pi, \mathcal{G}, z, y)$, where
$(Z, Y, i, \pi, \mathcal{G})$ is a one step d\'evissage of
$\mathcal{F}/X/S$ over $s$ and
\begin{enumerate}
\item $\dim_x(\text{Supp}(\mathcal{F}_s)) = \dim(\text{Supp}(\mathcal{F}_s))$,
\item $z \in Z$ is a point with $i(z) = x$ and $\pi(z) = y$,
\item we have $\pi^{-1}(\{y\}) = \{z\}$,
\item the extension $\kappa(y)/\kappa(s)$ is purely
transcendental.
\end{enumerate}
\end{definition}
\noindent
A one step d\'evissage of $\mathcal{F}/X/S$ at $x$ can only exist if
$X$ and $S$ are affine. Condition (1) assures us that $Y \to S$ has
relative dimension equal to $\dim_x(\text{Supp}(\mathcal{F}_s))$
via condition (5) of
Definition \ref{definition-one-step-devissage}.
\begin{lemma}
\label{lemma-elementary-devissage-variant}
Let $f : X \to S$ be morphism of schemes which is locally of finite type.
Let $\mathcal{F}$ be a finite type quasi-coherent $\mathcal{O}_X$-module.
Let $x \in X$ with image $s = f(x)$ in $S$.
Then there exists a commutative diagram of pointed schemes
$$
\xymatrix{
(X, x) \ar[d]_f & (X', x') \ar[l]^g \ar[d] \\
(S, s) & (S', s') \ar[l] \\
}
$$
such that $(S', s') \to (S, s)$ and $(X', x') \to (X, x)$
are elementary \'etale neighbourhoods, and such that
$g^*\mathcal{F}/X'/S'$ has a one step d\'evissage at $x'$.
\end{lemma}
\begin{proof}
This is immediate from
Definition \ref{definition-one-step-devissage-at-x}
and
Lemma \ref{lemma-elementary-devissage}.
\end{proof}
\begin{lemma}
\label{lemma-base-change-one-step}
Let $S$, $X$, $\mathcal{F}$, $s$ be as in
Definition \ref{definition-one-step-devissage}.
Let $(Z, Y, i, \pi, \mathcal{G})$ be a one step d\'evissage
of $\mathcal{F}/X/S$ over $s$.
Let $(S', s') \to (S, s)$ be any morphism of pointed schemes.
Given this data let $X', Z', Y', i', \pi'$ be the base
changes of $X, Z, Y, i, \pi$ via $S' \to S$.
Let $\mathcal{F}'$ be the pullback of $\mathcal{F}$ to $X'$
and let $\mathcal{G}'$ be the pullback of $\mathcal{G}$ to $Z'$.
If $S'$ is affine, then $(Z', Y', i', \pi', \mathcal{G}')$
is a one step d\'evissage of $\mathcal{F}'/X'/S'$ over $s'$.
\end{lemma}
\begin{proof}
Fibre products of affines are affine, see
Schemes, Lemma \ref{schemes-lemma-fibre-product-affines}.
Base change preserves
closed immersions,
morphisms of finite presentation,
finite morphisms,
smooth morphisms,
morphisms with geometrically irreducible fibres, and
morphisms of relative dimension $n$, see
Morphisms, Lemmas \ref{morphisms-lemma-base-change-closed-immersion},
\ref{morphisms-lemma-base-change-finite-presentation},
\ref{morphisms-lemma-base-change-finite},
\ref{morphisms-lemma-base-change-smooth},
\ref{morphisms-lemma-base-change-relative-dimension-d}, and
More on Morphisms, Lemma
\ref{more-morphisms-lemma-base-change-fibres-geometrically-irreducible}.
We have $i'_*\mathcal{G}' \cong \mathcal{F}'$ because pushforward
along the finite morphism $i$ commutes with base change, see
Cohomology of Schemes, Lemma \ref{coherent-lemma-affine-base-change}.
We have
$\dim(\text{Supp}(\mathcal{F}_s)) = \dim(\text{Supp}(\mathcal{F}'_{s'}))$
by
Morphisms, Lemma \ref{morphisms-lemma-dimension-fibre-after-base-change}
because
$$
\text{Supp}(\mathcal{F}_s) \times_s s' = \text{Supp}(\mathcal{F}'_{s'}).
$$
This proves the lemma.
\end{proof}
\begin{lemma}
\label{lemma-base-change-one-step-at-x}
Let $S$, $X$, $\mathcal{F}$, $x$, $s$ be as in
Definition \ref{definition-one-step-devissage-at-x}.
Let $(Z, Y, i, \pi, \mathcal{G}, z, y)$ be a one step d\'evissage
of $\mathcal{F}/X/S$ at $x$.
Let $(S', s') \to (S, s)$ be a morphism of pointed schemes
which induces an isomorphism $\kappa(s) = \kappa(s')$.
Let $(Z', Y', i', \pi', \mathcal{G}')$ be as constructed in
Lemma \ref{lemma-base-change-one-step}
and let $x' \in X'$ (resp.\ $z' \in Z'$, $y' \in Y'$) be the
unique point mapping to both $x \in X$ (resp.\ $z \in Z$, $y \in Y$)
and $s' \in S'$.
If $S'$ is affine, then $(Z', Y', i', \pi', \mathcal{G}', z', y')$
is a one step d\'evissage of $\mathcal{F}'/X'/S'$ at $x'$.
\end{lemma}
\begin{proof}
By
Lemma \ref{lemma-base-change-one-step}
$(Z', Y', i', \pi', \mathcal{G}')$ is a one step d\'evissage of
$\mathcal{F}'/X'/S'$ over $s'$. Properties (1) -- (4) of
Definition \ref{definition-one-step-devissage-at-x}
hold for $(Z', Y', i', \pi', \mathcal{G}', z', y')$
as the assumption that $\kappa(s) = \kappa(s')$ insures that the fibres
$X'_{s'}$, $Z'_{s'}$, and $Y'_{s'}$ are isomorphic to
$X_s$, $Z_s$, and $Y_s$.
\end{proof}
\begin{definition}
\label{definition-shrink}
Let $S$, $X$, $\mathcal{F}$, $x$, $s$ be as in
Definition \ref{definition-one-step-devissage-at-x}.
Let $(Z, Y, i, \pi, \mathcal{G}, z, y)$ be a one step d\'evissage
of $\mathcal{F}/X/S$ at $x$. Let us define a
{\it standard shrinking} of this situation to be
given by standard opens $S' \subset S$, $X' \subset X$, $Z' \subset Z$,
and $Y' \subset Y$ such that $s \in S'$, $x \in X'$, $z \in Z'$, and
$y \in Y'$ and such that
$$
(Z', Y', i|_{Z'}, \pi|_{Z'}, \mathcal{G}|_{Z'}, z, y)
$$
is a one step d\'evissage of $\mathcal{F}|_{X'}/X'/S'$ at $x$.
\end{definition}
\begin{lemma}
\label{lemma-shrink}
With assumption and notation as in
Definition \ref{definition-shrink}
we have:
\begin{enumerate}
\item
\label{item-shrink-base}
If $S' \subset S$ is a standard open neighbourhood of $s$, then
setting $X' = X_{S'}$, $Z' = Z_{S'}$ and $Y' = Y_{S'}$ we obtain a
standard shrinking.
\item
\label{item-shrink-on-Y}
Let $W \subset Y$ be a standard open neighbourhood of $y$.
Then there exists a standard shrinking with $Y' = W \times_S S'$.
\item
\label{item-shrink-on-X}
Let $U \subset X$ be an open neighbourhood of $x$.
Then there exists a standard shrinking with $X' \subset U$.
\end{enumerate}
\end{lemma}
\begin{proof}
Part (1) is immediate from
Lemma \ref{lemma-base-change-one-step-at-x}
and the fact that the inverse image of a standard open under a morphism
of affine schemes is a standard open, see
Algebra, Lemma \ref{algebra-lemma-spec-functorial}.
\medskip\noindent
Let $W \subset Y$ as in (2). Because $Y \to S$ is smooth it is open, see
Morphisms, Lemma \ref{morphisms-lemma-smooth-open}.