-
Notifications
You must be signed in to change notification settings - Fork 152
/
more-etale.tex
4966 lines (4548 loc) · 187 KB
/
more-etale.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{More \'Etale Cohomology}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
This chapter is the second in a series of chapters on the \'etale cohomology
of schemes. To read the first chapter, please visit
\'Etale Cohomology, Section \ref{etale-cohomology-section-introduction}.
\medskip\noindent
The split with the previous chapter is roughly speaking that anything
concerning ``shriek functors'' (cohomology with compact support and
its right adjoint) and anything using this material goes into this chapter.
\section{Growing sections}
\label{section-growing}
\noindent
In this section we discuss results of the following type.
\begin{lemma}
\label{lemma-section-support-in-locally-closed-pre}
Let $X$ be a scheme. Let $\mathcal{F}$ be an abelian sheaf on $X_\etale$.
Let $\varphi : U' \to U$ be a morphism of $X_\etale$. Let $Z' \subset U'$ be a
closed subscheme such that $Z' \to U' \to U$ is a closed immersion
with image $Z \subset U$. Then there is a canonical bijection
$$
\{s \in \mathcal{F}(U) \mid \text{Supp}(s) \subset Z\} =
\{s' \in \mathcal{F}(U') \mid \text{Supp}(s') \subset Z'\}
$$
which is given by restriction if $\varphi^{-1}(Z) = Z'$.
\end{lemma}
\begin{proof}
Consider the closed subscheme $Z'' = \varphi^{-1}(Z)$ of $U'$.
Then $Z' \subset Z''$ is closed because $Z'$ is closed in $U'$.
On the other hand, $Z' \to Z''$ is an \'etale morphism
(as a morphism between schemes \'etale over $Z$) and hence
open. Thus $Z'' = Z' \amalg T$ for some closed subset $T$.
The open covering $U' = (U' \setminus T) \cup (U' \setminus Z')$
shows that
$$
\{s' \in \mathcal{F}(U') \mid \text{Supp}(s') \subset Z'\} =
\{s' \in \mathcal{F}(U' \setminus T) \mid \text{Supp}(s') \subset Z'\}
$$
and the \'etale covering $\{U' \setminus T \to U, U \setminus Z \to U\}$
shows that
$$
\{s \in \mathcal{F}(U) \mid \text{Supp}(s) \subset Z\} =
\{s' \in \mathcal{F}(U' \setminus T) \mid \text{Supp}(s') \subset Z'\}
$$
This finishes the proof.
\end{proof}
\begin{lemma}
\label{lemma-section-support-in-locally-closed}
Let $X$ be a scheme. Let $Z \subset X$ be a locally closed subscheme.
Let $\mathcal{F}$ be an abelian sheaf on $X_\etale$. Given
$U, U' \subset X$ open containing $Z$ as a closed subscheme,
there is a canonical bijection
$$
\{s \in \mathcal{F}(U) \mid \text{Supp}(s) \subset Z\} =
\{s \in \mathcal{F}(U') \mid \text{Supp}(s) \subset Z\}
$$
which is given by restriction if $U' \subset U$.
\end{lemma}
\begin{proof}
Since $Z$ is a closed subscheme of $U \cap U'$, it suffices to
prove the lemma when $U' \subset U$. Then it is a special case
of Lemma \ref{lemma-section-support-in-locally-closed-pre}.
\end{proof}
\noindent
Let us introduce a bit of nonstandard notation which will stand us
in good stead later. Namely, in the situation of
Lemma \ref{lemma-section-support-in-locally-closed} above, let us denote
$$
H_Z(\mathcal{F}) = \{s \in \mathcal{F}(U) \mid \text{Supp}(s) \subset Z\}
$$
where $U \subset X$ is any choice of open subscheme containing $Z$ as a closed
subscheme. The reader who is troubled by the lack of precision this entails
may choose $U = X \setminus \partial Z$ where
$\partial Z = \overline{Z}\setminus Z$ is the ``boundary'' of $Z$ in $X$.
However, in many of the arguments below the flexibility of choosing
different opens will play a role. Here are some properties of this
construction:
\begin{enumerate}
\item
\label{item-inclusion}
If $Z \subset Z'$ are locally closed subschemes of $X$ and $Z$ is
closed in $Z'$, then there is a natural injective map
$$
H_Z(\mathcal{F}) \to H_{Z'}(\mathcal{F}).
$$
\item
\label{item-pullback}
If $f : Y \to X$ is a morphism of schemes and $Z \subset X$ is a locally
closed subscheme, then there is a natural
pullback map $f^* : H_Z(\mathcal{F}) \to H_{f^{-1}Z}(f^{-1}\mathcal{F})$.
\end{enumerate}
It will be convenient to extend our notation to the following situation:
suppose that we have $W \in X_\etale$ and a locally closed subscheme
$Z \subset W$. Then we will denote
$$
H_Z(\mathcal{F}) =
\{s \in \mathcal{F}(U) \mid \text{Supp}(s) \subset Z\} =
H_Z(\mathcal{F}|_{W_\etale})
$$
where $U \subset W$ is any choice of open subscheme containing $Z$
as a closed subscheme, exactly as above\footnote{In fact,
Lemma \ref{lemma-section-support-in-locally-closed-pre}
shows, given $Z$ over $X$ which is isomorphic to a locally closed
subscheme of some object $W$ of $X_\etale$, that
the choice of $W$ is irrelevant.}.
\section{Sections with compact support}
\label{section-compact-support}
\noindent
A reference for this section is \cite[Exposee XVII, Section 6]{SGA4}.
Let $f : X \to Y$ be a morphism of schemes which is separated and
locally of finite type. In this section we define a functor
$f_! : \textit{Ab}(X_\etale) \to \textit{Ab}(Y_\etale)$
by taking $f_!\mathcal{F} \subset f_*\mathcal{F}$
to be the subsheaf of sections which have proper support relative to $Y$
(suitably defined).
\medskip\noindent
Warning: The functor $f_!$ is the zeroth cohomology sheaf of a functor
$Rf_!$ on the derived category (insert future reference), but
$Rf_!$ is not the derived functor of $f_!$.
\begin{lemma}
\label{lemma-f-shriek-separated}
Let $f : X \to Y$ be a morphism of schemes which is locally of finite type.
Let $\mathcal{F}$ be an abelian sheaf on $X_\etale$. The rule
$$
Y_\etale \longrightarrow \textit{Ab},\quad
V \longmapsto \{s \in f_*\mathcal{F}(V) = \mathcal{F}(X_V) \mid
\text{Supp}(s) \subset X_V \text{ is proper over }V\}
$$
is an abelian subsheaf of $f_*\mathcal{F}$.
\end{lemma}
\noindent
Warning: This sheaf isn't the ``correct one'' if $f$ is not separated.
\begin{proof}
Recall that the support of a section is closed
(\'Etale Cohomology, Lemma \ref{etale-cohomology-lemma-support-section-closed})
hence the material in
Cohomology of Schemes, Section \ref{coherent-section-proper-over-base}
applies. By the lemma above and
Cohomology of Schemes, Lemma \ref{coherent-lemma-union-closed-proper-over-base}
we find that our subset of $f_*\mathcal{F}(V)$ is a subgroup.
By Cohomology of Schemes, Lemma
\ref{coherent-lemma-base-change-closed-proper-over-base}
we see that our rule defines a sub presheaf.
Finally, suppose that we have $s \in f_*\mathcal{F}(V)$
and an \'etale covering $\{V_i \to V\}$ such that
$s|_{V_i}$ has support proper over $V_i$.
Observe that the support of $s|_{V_i}$ is the inverse
image of the support of $s|_V$ (use the characterization
of the support in terms of stalks and
\'Etale Cohomology, Lemma \ref{etale-cohomology-lemma-stalk-pullback}).
Whence the support of $s$ is proper over $V$ by
Descent, Lemma \ref{descent-lemma-descending-property-proper-over-base}.
This proves that our rule satisfies the sheaf condition.
\end{proof}
\begin{lemma}
\label{lemma-separated-etale-shriek}
Let $j : U \to X$ be a separated \'etale morphism. Let $\mathcal{F}$
be an abelian sheaf on $U_\etale$. The image of the injective map
$j_!\mathcal{F} \to j_*\mathcal{F}$ of
\'Etale Cohomology, Lemma
\ref{etale-cohomology-lemma-shriek-into-star-separated-etale}
is the subsheaf of Lemma \ref{lemma-f-shriek-separated}.
\end{lemma}
\noindent
An alternative would be to move this lemma later and prove this
using the description of the stalks of both sheaves.
\begin{proof}
The construction of $j_!\mathcal{F} \to j_*\mathcal{F}$ in the proof of
\'Etale Cohomology, Lemma
\ref{etale-cohomology-lemma-shriek-into-star-separated-etale}
is via the construction of a map
$j_{p!}\mathcal{F} \to j_*\mathcal{F}$ of presheaves
whose image is clearly contained in the subsheaf of
Lemma \ref{lemma-f-shriek-separated}.
Hence since $j_!\mathcal{F}$ is the sheafification of
$j_{p!}\mathcal{F}$ we conclude the image of
$j_!\mathcal{F} \to j_*\mathcal{F}$ is contained in
this subsheaf. Conversely, let $s \in j_*\mathcal{F}(V)$
have support $Z$ proper over $V$. Then $Z \to V$ is
finite with closed image $Z' \subset V$, see
More on Morphisms, Lemma \ref{more-morphisms-lemma-characterize-finite}.
The restriction of $s$ to $V \setminus Z'$ is zero and the zero section is
contained in the image of $j_!\mathcal{F} \to j_*\mathcal{F}$.
On the other hand, if $v \in Z'$, then we can find
an \'etale neighbourhood
$(V', v') \to (V, v)$ such that we have a decomposition
$U_{V'} = W \amalg U'_1 \amalg \ldots \amalg U'_n$
into open and closed subschemes with $U'_i \to V'$ an isomorphism
and with $T_{V'} \subset U'_1 \amalg \ldots \amalg U'_n$, see
\'Etale Morphisms, Lemma \ref{etale-lemma-etale-etale-local-technical}.
Inverting the isomorphisms $U'_i \to V'$
we obtain $n$ morphisms $\varphi'_i : V' \to U$
and sections $s'_i$ over $V'$ by pulling back $s$.
Then the section $\sum (\varphi'_i, s'_i)$ of
$j_{p!}\mathcal{F}$ over $V'$, see formula for $j_{p!}\mathcal{F}(V')$
in proof of \'Etale Cohomology, Lemma
\ref{etale-cohomology-lemma-shriek-into-star-separated-etale},
maps to the restriction of $s$ to $V'$ by construction.
We conclude that $s$ is \'etale locally in the image
of $j_!\mathcal{F} \to j_*\mathcal{F}$ and the proof is complete.
\end{proof}
\begin{definition}
\label{definition-f-shriek-separated}
Let $f : X \to Y$ be a morphism of schemes which is separated (!) and
locally of finite type. Let $\mathcal{F}$ be an abelian sheaf on
$X_\etale$. The subsheaf $f_!\mathcal{F} \subset f_*\mathcal{F}$
constructed in Lemma \ref{lemma-f-shriek-separated} is called the
{\it direct image with compact support}.
\end{definition}
\noindent
By Lemma \ref{lemma-separated-etale-shriek} this does not conflict with
\'Etale Cohomology, Definition \ref{etale-cohomology-definition-extension-zero}
as we have agreement when both definitions apply. Here is a sanity check.
\begin{lemma}
\label{lemma-proper-f-shriek}
Let $f : X \to Y$ be a proper morphism of schemes.
Then $f_! = f_*$.
\end{lemma}
\begin{proof}
Immediate from the construction of $f_!$.
\end{proof}
\noindent
A very useful observation is the following.
\begin{remark}[Covariance with respect to open embeddings]
\label{remark-covariance-f-shriek-separated}
Let $f : X \to Y$ be morphism of schemes which is separated and
locally of finite type. Let $\mathcal{F}$ be an abelian sheaf on $X_\etale$.
Let $X' \subset X$ be an open subscheme. Denote $f' : X' \to Y$
the restriction of $f$. There is a canonical injective map
$$
f'_!(\mathcal{F}|_{X'}) \longrightarrow f_!\mathcal{F}
$$
Namely, let $V \in Y_\etale$ and consider a section
$s' \in f'_*(\mathcal{F}|_{X'})(V) = \mathcal{F}(X' \times_Y V)$
with support $Z'$ proper over $V$. Then $Z'$ is closed in $X \times_Y V$
as well, see Cohomology of Schemes, Lemma
\ref{coherent-lemma-functoriality-closed-proper-over-base}.
Thus there is a unique section
$s \in \mathcal{F}(X \times_Y V) = f_*\mathcal{F}(V)$
whose restriction to $X' \times_Y V$ is $s'$ and whose restriction
to $X \times_Y V \setminus Z'$ is zero, see
Lemma \ref{lemma-section-support-in-locally-closed}. This construction is
compatible with restriction maps and hence induces the desired map of
sheaves $f'_!(\mathcal{F}|_{X'}) \to f_!\mathcal{F}$ which is clearly
injective. By construction we obtain a commutative diagram
$$
\xymatrix{
f'_!(\mathcal{F}|_{X'}) \ar[r] \ar[d] &
f_!\mathcal{F} \ar[d] \\
f'_*(\mathcal{F}|_{X'}) &
f_*\mathcal{F} \ar[l]
}
$$
functorial in $\mathcal{F}$. It is clear that for $X'' \subset X'$ open
with $f'' = f|_{X''} : X'' \to Y$ the composition of the canonical maps
$f''_!\mathcal{F}|_{X''} \to f'_!\mathcal{F}|_{X'} \to f_!\mathcal{F}$
just constructed is the canonical map
$f''_!\mathcal{F}|_{X''} \to f_!\mathcal{F}$.
\end{remark}
\begin{lemma}
\label{lemma-compactify-f-shriek-separated}
Let $Y$ be a scheme. Let $j : X \to \overline{X}$ be an open
immersion of schemes over $Y$ with $\overline{X}$ proper over $Y$.
Denote $f : X \to Y$ and $\overline{f} : \overline{X} \to Y$
the structure morphisms. For $\mathcal{F} \in \textit{Ab}(X_\etale)$
there is a canonical isomorphism (see proof)
$$
f_!\mathcal{F} \longrightarrow \overline{f}_!j_!\mathcal{F}
$$
As we have $\overline{f}_! = \overline{f}_*$ by
Lemma \ref{lemma-proper-f-shriek} we obtain
$\overline{f}_* \circ j_! = f_!$ as functors
$\textit{Ab}(X_\etale) \to \textit{Ab}(Y_\etale)$.
\end{lemma}
\begin{proof}
We have $(j_!\mathcal{F})|_X = \mathcal{F}$, see
\'Etale Cohomology, Lemma \ref{etale-cohomology-lemma-jshriek-open}.
Thus the displayed arrow is the injective map
$f_!(\mathcal{G}|_X) \to \overline{f}_!\mathcal{G}$
of Remark \ref{remark-covariance-f-shriek-separated}
for $\mathcal{G} = j_!\mathcal{F}$. The explicit nature
of this map implies that it now suffices to show: if $V \in Y_\etale$ and
$s \in \overline{f}_!\mathcal{G}(V) = \overline{f}_*\mathcal{G}(V) =
\mathcal{G}(\overline{X}_V)$
is a section, then the support of $s$ is contained in the open
$X_V \subset \overline{X}_V$. This is immediate from the fact
that the stalks of $\mathcal{G}$ are zero at geometric
points of $\overline{X} \setminus X$.
\end{proof}
\noindent
We want to relate the stalks of $f_!\mathcal{F}$ to sections with
compact support on fibres. In order to state this, we need a definition.
\begin{definition}
\label{definition-compact-support}
Let $X$ be a separated scheme locally of finite type over a field $k$.
Let $\mathcal{F}$ be an abelian sheaf on $X_\etale$. We let
$H^0_c(X, \mathcal{F}) \subset H^0(X, \mathcal{F})$ be the
set of sections whose support is proper over $k$. Elements of
$H^0_c(X, \mathcal{F})$ are called {\it sections with compact support}.
\end{definition}
\noindent
Warning: This definition isn't the ``correct one'' if $X$ isn't
separated over $k$.
\begin{lemma}
\label{lemma-proper-compact-support}
Let $X$ be a proper scheme over a field $k$. Then
$H^0_c(X, \mathcal{F}) = H^0(X, \mathcal{F})$.
\end{lemma}
\begin{proof}
Immediate from the construction of $H^0_c$.
\end{proof}
\begin{remark}[Open embeddings and compactly supported sections]
\label{remark-covariance-compact-support}
Let $X$ be a separated scheme locally of finite type over a field $k$.
Let $\mathcal{F}$ be an abelian sheaf on $X_\etale$.
Exactly as in Remark \ref{remark-covariance-f-shriek-separated}
for $X' \subset X$ open there is an injective map
$$
H^0_c(X', \mathcal{F}|_{X'}) \longrightarrow H^0_c(X, \mathcal{F})
$$
and these maps turn $H^0_c$ into a ``cosheaf'' on the Zariski site of $X$.
\end{remark}
\begin{lemma}
\label{lemma-compactify-compact-support}
Let $k$ be a field. Let $j : X \to \overline{X}$ be an open
immersion of schemes over $k$ with $\overline{X}$ proper over $k$.
For $\mathcal{F} \in \textit{Ab}(X_\etale)$
there is a canonical isomorphism (see proof)
$$
H^0_c(X, \mathcal{F}) \longrightarrow
H^0_c(\overline{X}, j_!\mathcal{F}) =
H^0(\overline{X}, j_!\mathcal{F})
$$
where we have the equality on the right by
Lemma \ref{lemma-proper-compact-support}.
\end{lemma}
\begin{proof}
We have $(j_!\mathcal{F})|_X = \mathcal{F}$, see
\'Etale Cohomology, Lemma \ref{etale-cohomology-lemma-jshriek-open}.
Thus the displayed arrow is the injective map
$H^0_c(X, \mathcal{G}|_X) \to H^0_c(\overline{X}, \mathcal{G})$
of Remark \ref{remark-covariance-compact-support}
for $\mathcal{G} = j_!\mathcal{F}$. The explicit nature
of this map implies that it now suffices to show: if
$s \in H^0(\overline{X}, \mathcal{G})$ is a section, then the support of
$s$ is contained in the open $X$. This is immediate from the fact
that the stalks of $\mathcal{G}$ are zero at geometric
points of $\overline{X} \setminus X$.
\end{proof}
\begin{lemma}
\label{lemma-stalk-f-shriek-separated}
Let $f : X \to Y$ be a morphism of schemes which is separated and
locally of finite type. Let $\mathcal{F}$ be an abelian sheaf on
$X_\etale$. Then there is a canonical isomorphism
$$
(f_!\mathcal{F})_{\overline{y}}
\longrightarrow
H^0_c(X_{\overline{y}}, \mathcal{F}|_{X_{\overline{y}}})
$$
for any geometric point $\overline{y} : \Spec(k) \to Y$.
\end{lemma}
\begin{proof}
Recall that $(f_*\mathcal{F})_{\overline{y}} = \colim f_*\mathcal{F}(V)$
where the colimit is over the \'etale neighbourhoods $(V, \overline{v})$
of $\overline{y}$. If $s \in f_*\mathcal{F}(V) = \mathcal{F}(X_V)$,
then we can pullback $s$ to a section of $\mathcal{F}$ over
$(X_V)_{\overline{v}} = X_{\overline{y}}$. Thus we obtain a canonical map
$$
c_{\overline{y}} :
(f_*\mathcal{F})_{\overline{y}}
\longrightarrow
H^0(X_{\overline{y}}, \mathcal{F}|_{X_{\overline{y}}})
$$
We claim that this map induces a bijection between the subgroups
$(f_!\mathcal{F})_{\overline{y}}$ and
$H^0_c(X_{\overline{y}}, \mathcal{F}|_{X_{\overline{y}}})$.
The claim implies the lemma, but is a little bit more precise
in that it describes the identification of the lemma as given
by pullbacks of sections of $\mathcal{F}$ to the geometric fibre of $f$.
\medskip\noindent
Observe that any element
$s \in (f_!\mathcal{F})_{\overline{y}} \subset (f_*\mathcal{F})_{\overline{y}}$
is mapped by $c_{\overline{y}}$ to an element of
$H^0_c(X_{\overline{y}}, \mathcal{F}|_{X_{\overline{y}}}) \subset
H^0(X_{\overline{y}}, \mathcal{F}|_{X_{\overline{y}}})$.
This is true because taking the support of a section
commutes with pullback and because properness is preserved by
base change. This at least produces the map in the statement of the lemma.
To prove that it is an isomorphism we may work Zariski
locally on $Y$ and hence we may and do assume $Y$ is affine.
\medskip\noindent
An observation that we will use below
is that given an open subscheme $X' \subset X$
and if $f' = f|_{X'}$, then we obtain a commutative diagram
$$
\xymatrix{
(f'_!(\mathcal{F}|_{X'}))_{\overline{y}} \ar[r] \ar[d] &
H^0_c(X'_{\overline{y}}, \mathcal{F}|_{X'_{\overline{y}}}) \ar[d] \\
(f_!\mathcal{F})_{\overline{y}} \ar[r] &
H^0_c(X_{\overline{y}}, \mathcal{F}|_{X_{\overline{y}}})
}
$$
where the horizontal arrows are the maps constructed above and
the vertical arrows are given in
Remarks \ref{remark-covariance-f-shriek-separated} and
\ref{remark-covariance-compact-support}.
The reason is that given an \'etale neighbourhood $(V, \overline{v})$
of $\overline{y}$ and a section $s \in f_*\mathcal{F}(V) = \mathcal{F}(X_V)$
whose support $Z$ happens to be contained in $X'_V$ and is proper over $V$,
so that $s$ gives rise to an element of both
$(f'_!(\mathcal{F}|_{X'}))_{\overline{y}}$ and
$(f_!\mathcal{F})_{\overline{y}}$ which correspond via
the vertical arrow of the diagram, then these elements are mapped via the
horizontal arrows to the pullback $s|_{X_{\overline{y}}}$ of $s$ to
$X_{\overline{y}}$ whose support $Z_{\overline{y}}$ is contained in
$X'_{\overline{y}}$ and hence this restriction gives rise to
a compatible pair of elements of
$H^0_c(X'_{\overline{y}}, \mathcal{F}|_{X'_{\overline{y}}})$
and
$H^0_c(X_{\overline{y}}, \mathcal{F}|_{X_{\overline{y}}})$.
\medskip\noindent
Suppose $s \in (f_!\mathcal{F})_{\overline{y}}$ maps to zero in
$H^0_c(X_{\overline{y}}, \mathcal{F}|_{X_{\overline{y}}})$.
Say $s$ corresponds to $s \in f_*\mathcal{F}(V) = \mathcal{F}(X_V)$
with support $Z$ proper over $V$. We may assume that $V$ is affine
and hence $Z$ is quasi-compact. Then we may choose a quasi-compact open
$X' \subset X$ containing the image of $Z$. Then $Z$ is contained in
$X'_V$ and hence $s$ is the image of an element
$s' \in f'_!(\mathcal{F}|_{X'})(V)$ where $f' = f|_{X'}$ as in
the previous paragraph. Then $s'$ maps to zero in
$H^0_c(X'_{\overline{y}}, \mathcal{F}|_{X'_{\overline{y}}})$.
Hence in order to prove injectivity, we may replace $X$ by
$X'$, i.e., we may assume $X$ is quasi-compact. We will prove
this case below.
\medskip\noindent
Suppose that
$t \in H^0_c(X_{\overline{y}}, \mathcal{F}|_{X_{\overline{y}}})$.
Then the support of $t$ is contained in a quasi-compact
open subscheme $W \subset X_{\overline{y}}$.
Hence we can find a quasi-compact open subscheme
$X' \subset X$ such that $X'_{\overline{y}}$ contains $W$.
Then it is clear that $t$ is contained in the image
of the injective map
$H^0_c(X'_{\overline{y}}, \mathcal{F}|_{X'_{\overline{y}}}) \to
H^0_c(X_{\overline{y}}, \mathcal{F}|_{X_{\overline{y}}})$.
Hence in order to show surjectivity, we may replace $X$
by $X'$, i.e., we may assume $X$ is quasi-compact.
We will prove this case below.
\medskip\noindent
In this last paragraph of the proof we prove the lemma in case
$X$ is quasi-compact and $Y$ is affine. By More on Flatness, Theorem
\ref{flat-theorem-nagata} there exists a compactification
$j : X \to \overline{X}$ over $Y$. Set $\mathcal{G} = j_!\mathcal{F}$
so that $\mathcal{F} = \mathcal{G}|_X$ by
\'Etale Cohomology, Lemma \ref{etale-cohomology-lemma-jshriek-open}.
By the discussion above we get a commutative diagram
$$
\xymatrix{
(f_!\mathcal{F})_{\overline{y}} \ar[r] \ar[d] &
H^0_c(X_{\overline{y}}, \mathcal{F}|_{X_{\overline{y}}}) \ar[d] \\
(\overline{f}_!\mathcal{G})_{\overline{y}} \ar[r] &
H^0_c(\overline{X}_{\overline{y}}, \mathcal{G}|_{\overline{X}_{\overline{y}}})
}
$$
By Lemmas \ref{lemma-compactify-f-shriek-separated} and
\ref{lemma-compactify-compact-support} the vertical maps
are isomorphisms. This reduces us to the case of the proper
morphism $\overline{X} \to Y$. For a proper morphism our map
is an isomorphism by
Lemmas \ref{lemma-proper-f-shriek} and \ref{lemma-proper-compact-support}
and proper base change for pushforwards, see
\'Etale Cohomology, Lemma
\ref{etale-cohomology-lemma-proper-pushforward-stalk}.
\end{proof}
\begin{lemma}
\label{lemma-base-change-f-shriek-separated}
Consider a cartesian square
$$
\xymatrix{
X' \ar[r]_{g'} \ar[d]_{f'} & X \ar[d]^f \\
Y' \ar[r]^g & Y
}
$$
of schemes with $f$ separated and locally of finite type.
For any abelian sheaf $\mathcal{F}$ on $X_\etale$ we have
$f'_!(g')^{-1}\mathcal{F} = g^{-1}f_!\mathcal{F}$.
\end{lemma}
\begin{proof}
In great generality there is a pullback map
$g^{-1}f_*\mathcal{F} \to f'_*(g')^{-1}\mathcal{F}$, see
Sites, Section \ref{sites-section-pullback}.
We claim that this map sends $g^{-1}f_!\mathcal{F}$
into the subsheaf $f'_!(g')^{-1}\mathcal{F}$
and induces the isomorphism in the lemma.
\medskip\noindent
Choose a geometric point $\overline{y}': \Spec(k) \to Y'$ and denote
$\overline{y} = g \circ \overline{y}'$ the image in $Y$. There is a
commutative diagram
$$
\xymatrix{
(f_*\mathcal{F})_{\overline{y}} \ar[r] \ar[d] &
H^0(X_{\overline{y}}, \mathcal{F}|_{X_{\overline{y}}}) \ar[d] \\
(f'_*(g')^{-1}\mathcal{F})_{\overline{y}'} \ar[r] &
H^0(X'_{\overline{y}'}, (g')^{-1}\mathcal{F}|_{X'_{\overline{y}'}})
}
$$
where the horizontal maps were used in the proof of
Lemma \ref{lemma-stalk-f-shriek-separated}
and the vertical maps are the pullback maps above.
The diagram commutes because each of the four maps
in question is given by pulling back local sections along
a morphism of schemes and the underlying diagram of morphisms
of schemes commutes. Since the diagram in the statement of the lemma
is cartesian we have $X'_{\overline{y}'} = X_{\overline{y}}$.
Hence by Lemma \ref{lemma-stalk-f-shriek-separated}
and its proof we obtain a commutative diagram
$$
\xymatrix{
(f_*\mathcal{F})_{\overline{y}} \ar[rrr] \ar[ddd] & & &
H^0(X_{\overline{y}}, \mathcal{F}|_{X_{\overline{y}}}) \ar[ddd] \\
& (f_!\mathcal{F})_{\overline{y}} \ar[r] \ar@{..>}[d] \ar[lu] &
H^0_c(X_{\overline{y}}, \mathcal{F}|_{X_{\overline{y}}}) \ar[d] \ar[ru] \\
& (f'_!(g')^{-1}\mathcal{F})_{\overline{y}'} \ar[r] \ar[ld] &
H^0_c(X'_{\overline{y}'}, (g')^{-1}\mathcal{F}|_{X'_{\overline{y}'}}) \ar[rd]\\
(f'_*(g')^{-1}\mathcal{F})_{\overline{y}'} \ar[rrr] & & &
H^0(X'_{\overline{y}'}, (g')^{-1}\mathcal{F}|_{X'_{\overline{y}'}})
}
$$
where the horizontal arrows of the inner square are isomorphisms
and the two right vertical arrows are equalities. Also, the
se, sw, ne, nw arrows are injective. It follows that there is a unique
bijective dotted arrow fitting into the diagram. We conclude that
$g^{-1}f_!\mathcal{F} \subset g^{-1}f_*\mathcal{F} \to f'_*(g')^{-1}\mathcal{F}$
is mapped into the subsheaf
$f'_!(g')^{-1}\mathcal{F} \subset f'_*(g')^{-1}\mathcal{F}$
because this is true on stalks, see
\'Etale Cohomology, Theorem \ref{etale-cohomology-theorem-exactness-stalks}.
The same theorem then implies that the induced map is an isomorphism
and the proof is complete.
\end{proof}
\begin{lemma}
\label{lemma-f-shriek-composition}
Let $f : X \to Y$ and $g : Y \to Z$ be composable morphisms of schemes which
are separated and locally of finite type. Let $\mathcal{F}$ be an abelian
sheaf on $X_\etale$. Then $g_!f_!\mathcal{F} = (g \circ f)_!\mathcal{F}$
as subsheaves of $(g \circ f)_*\mathcal{F}$.
\end{lemma}
\begin{proof}
We strongly urge the reader to prove this for themselves.
Let $W \in Z_\etale$ and
$s \in (g \circ f)_*\mathcal{F}(W) = \mathcal{F}(X_W)$.
Denote $T \subset X_W$ the support of $s$; this is a closed
subset. Observe that $s$ is a section of $(g \circ f)_!\mathcal{F}$
if and only if $T$ is proper over $W$. We have
$f_!\mathcal{F} \subset f_*\mathcal{F}$ and hence
$g_!f_!\mathcal{F} \subset g_!f_*\mathcal{F} \subset g_*f_*\mathcal{F}$.
On the other hand, $s$ is a section of $g_!f_!\mathcal{F}$ if and only
if (a) $T$ is proper over $Y_W$ and (b) the support $T'$ of $s$
viewed as section of $f_!\mathcal{F}$ is proper over $W$.
If (a) holds, then the image of $T$ in $Y_W$ is closed and since
$f_!\mathcal{F} \subset f_*\mathcal{F}$ we see that
$T' \subset Y_W$ is the image of $T$ (details omitted; look at stalks).
\medskip\noindent
The conclusion is that we have to show a closed subset $T \subset X_W$
is proper over $W$ if and only if $T$ is proper over $Y_W$
and the image of $T$ in $Y_W$ is proper over $W$. Let us endow $T$
with the reduced induced closed subscheme structure.
If $T$ is proper over $W$, then $T \to Y_W$ is proper by
Morphisms, Lemma \ref{morphisms-lemma-image-proper-scheme-closed}
and the image of $T$ in $Y_W$ is proper over $W$ by
Cohomology of Schemes, Lemma
\ref{coherent-lemma-functoriality-closed-proper-over-base}.
Conversely, if $T$ is proper over $Y_W$
and the image of $T$ in $Y_W$ is proper over $W$,
then the morphism $T \to W$ is proper as a composition
of proper morphisms (here we endow the closed image of $T$
in $Y_W$ with its reduced induced scheme structure to turn the
question into one about morphisms of schemes), see
Morphisms, Lemma \ref{morphisms-lemma-composition-proper}.
\end{proof}
\begin{remark}
\label{remark-f-shriek-base-change-composition}
The isomorphisms between functors
constructed above satisfy the following two properties:
\begin{enumerate}
\item Let $f : X \to Y$, $g : Y \to Z$, and $h : Z \to T$ be composable
morphisms of schemes which are separated and locally of finite type.
Then the diagram
$$
\xymatrix{
(h \circ g \circ f)_! \ar[r] \ar[d] &
(h \circ g)_! \circ f_! \ar[d] \\
h_! \circ (g \circ f)_! \ar[r] &
h_! \circ g_! \circ f_!
}
$$
commutes where the arrows are those of Lemma \ref{lemma-f-shriek-composition}.
\item Suppose that we have a diagram of schemes
$$
\xymatrix{
X' \ar[d]_{f'} \ar[r]_c & X \ar[d]^f \\
Y' \ar[d]_{g'} \ar[r]_b & Y \ar[d]^g \\
Z' \ar[r]^a & Z
}
$$
with both squares cartesian and $f$ and $g$ separated and
locally of finite type. Then the diagram
$$
\xymatrix{
a^{-1} \circ (g \circ f)_! \ar[d] \ar[rr] & &
(g' \circ f')_! \circ c^{-1} \ar[d] \\
a^{-1} \circ g_! \circ f_! \ar[r] &
g'_! \circ b^{-1} \circ f_! \ar[r] &
g'_! \circ f'_! \circ c^{-1}
}
$$
commutes where the horizontal arrows are those of
Lemma \ref{lemma-base-change-f-shriek-separated}
the arrows are those of Lemma \ref{lemma-f-shriek-composition}.
\end{enumerate}
Part (1) holds true because we have a similar commutative
diagram for pushforwards. Part (2) holds by the very general
compatibility of base change maps for pushforwards
(Sites, Remark \ref{sites-remark-compose-base-change})
and the fact that the isomorphisms in
Lemmas \ref{lemma-base-change-f-shriek-separated} and
\ref{lemma-f-shriek-composition}
are constructed using the corresponding maps of pushforwards.
\end{remark}
\begin{lemma}
\label{lemma-colim-f-shriek-separated}
Let $f : X \to Y$ be morphism of schemes which is separated and
locally of finite type. Let $X = \bigcup_{i \in I} X_i$ be an
open covering such that for all $i, j \in I$ there exists a $k$
with $X_i \cup X_j \subset X_k$. Denote $f_i : X_i \to Y$
the restriction of $f$. Then
$$
f_!\mathcal{F} = \colim_{i \in I} f_{i, !}(\mathcal{F}|_{X_i})
$$
functorially in $\mathcal{F} \in \textit{Ab}(X_\etale)$
where the transition maps are the ones constructed in
Remark \ref{remark-covariance-f-shriek-separated}.
\end{lemma}
\begin{proof}
It suffices to show that the canonical map from
right to left is a bijection when evaluated on a quasi-compact
object $V$ of $Y_\etale$.
Observe that the colimit on the right hand side is directed
and has injective transition maps.
Thus we can use
Sites, Lemma \ref{sites-lemma-directed-colimits-sections}
to evaluate the colimit. Hence, the statement comes down
to the observation that a closed subset $Z \subset X_V$ proper over $V$
is quasi-compact and hence is contained in $X_{i, V}$ for some $i$.
\end{proof}
\begin{lemma}
\label{lemma-f-shriek-separated-direct-sums}
Let $f : X \to Y$ be a morphism of schemes which is separated and
locally of finite type. Then functor $f_!$ commutes with direct sums.
\end{lemma}
\begin{proof}
Let $\mathcal{F} = \bigoplus \mathcal{F}_i$. To show that the map
$\bigoplus f_!\mathcal{F}_i \to f_!\mathcal{F}$ is an isomorphism,
it suffices to show that these sheaves have the same sections over
a quasi-compact object $V$ of $Y_\etale$. Replacing $Y$ by $V$
it suffices to show
$H^0(Y, f_!\mathcal{F}) \subset H^0(X, \mathcal{F})$
is equal to
$\bigoplus H^0(Y, f_!\mathcal{F}_i)
\subset \bigoplus H^0(X, \mathcal{F}_i)
\subset H^0(X, \bigoplus \mathcal{F}_i)$.
In this case, by writing $X$ as the union of its quasi-compact opens
and using Lemma \ref{lemma-colim-f-shriek-separated}
we reduce to the case where $X$ is quasi-compact as well.
Then $H^0(X, \mathcal{F}) = \bigoplus H^0(X, \mathcal{F}_i)$
by \'Etale Cohomology, Theorem \ref{etale-cohomology-theorem-colimit}.
Looking at supports of sections the reader easily concludes.
\end{proof}
\begin{lemma}
\label{lemma-lqf-f-shriek-separated-colimits}
Let $f : X \to Y$ be a morphism of schemes which is separated and
locally quasi-finite. Then
\begin{enumerate}
\item for $\mathcal{F}$ in $\textit{Ab}(X_\etale)$ and a geometric
point $\overline{y} : \Spec(k) \to Y$ we have
$$
(f_!\mathcal{F})_{\overline{y}} =
\bigoplus\nolimits_{f(\overline{x}) = \overline{y}} \mathcal{F}_{\overline{x}}
$$
functorially in $\mathcal{F}$, and
\item the functor $f_!$ is exact.
\end{enumerate}
\end{lemma}
\begin{proof}
The functor $f_!$ is left exact by construction. Right exactness may
be checked on stalks
(\'Etale Cohomology, Theorem \ref{etale-cohomology-theorem-exactness-stalks}).
Thus it suffices to prove part (1).
\medskip\noindent
Let $\overline{y} : \Spec(k) \to Y$ be a geometric point.
The scheme $X_{\overline{y}}$ has a discrete underlying
topological space
(Morphisms, Lemma \ref{morphisms-lemma-locally-quasi-finite-fibres})
and all the residue fields at the points are equal to $k$
(as finite extensions of $k$). Hence
$\{\overline{x} : \Spec(k) \to X : f(\overline{x}) = \overline{y}\}$
is equal to the set of points of $X_{\overline{y}}$.
Thus the computation of the stalk follows from the more general
Lemma \ref{lemma-stalk-f-shriek-separated}.
\end{proof}
\section{Sections with finite support}
\label{section-finite-support}
\noindent
In this section we extend the construction of
Section \ref{section-compact-support} to not necessarily
separated locally quasi-finite morphisms.
\medskip\noindent
Let $f : X \to Y$ be a locally quasi-finite morphism of schemes.
Let $\mathcal{F}$ be an abelian sheaf on $X_\etale$. Given $V$ in
$Y_\etale$ denote $X_V = X \times_Y V$ the base change. We are going
to consider the group of finite formal sums
\begin{equation}
\label{equation-formal-sum}
s = \sum\nolimits_{i = 1, \ldots, n} (Z_i, s_i)
\end{equation}
where $Z_i \subset X_V$ is a locally closed subscheme such that the
morphism $Z_i \to V$ is finite\footnote{Since $f$ is locally quasi-finite,
the morphism $Z_i \to V$ is finite if and only if it is proper.}
and where $s_i \in H_{Z_i}(\mathcal{F})$. Here, as in
Section \ref{section-growing}, we set
$$
H_{Z_i}(\mathcal{F}) =
\{s_i \in \mathcal{F}(U_i) \mid \text{Supp}(s_i) \subset Z_i\}
$$
where $U_i \subset X_V$ is an open subscheme containing $Z_i$ as a
closed subscheme. We are going to consider these formal sums modulo the
following relations
\begin{enumerate}
\item
\label{item-sum}
$(Z, s) + (Z, s') = (Z, s + s')$,
\item
\label{item-sub}
$(Z, s) = (Z', s)$ if $Z \subset Z'$.
\end{enumerate}
Observe that the second relation makes sense: since $Z \to V$ is finite
and $Z' \to V$ is separated, the inclusion $Z \to Z'$ is closed and we
can use the map discussed in (\ref{item-inclusion}).
\medskip\noindent
Let us denote $f_{p!}\mathcal{F}(V)$ the quotient of the abelian
group of formal sums (\ref{equation-formal-sum}) by these relations.
The first relation tells us that $f_{p!}\mathcal{F}(V)$ is a quotient
of the direct sum of the abelian groups $H_Z(\mathcal{F})$
over all locally closed subschemes $Z \subset X_V$ finite over $V$.
The second relation tells us that we are really taking the colimit
\begin{equation}
\label{equation-colimit-definition}
f_{p!}\mathcal{F}(V) = \colim_Z H_Z(\mathcal{F})
\end{equation}
This formula will be a convenient abstract way to think about
our construction.
\medskip\noindent
Next, we observe that there is a natural way to turn this construction
into a presheaf $f_{p!}\mathcal{F}$ of abelian groups on $Y_\etale$.
Namely, given $V' \to V$ in $Y_\etale$ we obtain the base change morphism
$X_{V'} \to X_V$. If $Z \subset X_V$ is a locally closed subscheme
finite over $V$, then the scheme theoretic inverse image $Z' \subset X_{V'}$
is finite over $V'$. Moreover, if $U \subset X_V$ is an open such
that $Z$ is closed in $U$, then the inverse image $U' \subset X_{V'}$
is an open such that $Z'$ is closed in $U'$. Hence the restriction
mapping $\mathcal{F}(U) \to \mathcal{F}(U')$ of $\mathcal{F}$
sends $H_Z(\mathcal{F})$ into $H_{Z'}(\mathcal{F})$; this is a special
case of the functoriality discussed in (\ref{item-pullback}) above.
Clearly, these maps are compatible with inclusions
$Z_1 \subset Z_2$ of such locally closed subschemes of $X_V$ and
we obtain a map
$$
f_{p!}\mathcal{F}(V) = \colim_Z H_Z(\mathcal{F})
\longrightarrow
\colim_{Z'} H_{Z'}(\mathcal{F}) =
f_{p!}\mathcal{F}(V')
$$
These maps indeed turn $f_{p!}\mathcal{F}$ into a presheaf of abelian
groups on $Y_\etale$. We omit the details.
\medskip\noindent
A final observation is that the construction of $f_{p!}\mathcal{F}$
is functorial in $\mathcal{F}$ in $\textit{Ab}(X_\etale)$.
We conclude that given a locally quasi-finite morphism $f : X \to Y$
we have constructed a functor
$$
f_{p!} :
\textit{Ab}(X_\etale)
\longrightarrow
\textit{PAb}(Y_\etale)
$$
from the category of abelian sheaves on $X_\etale$ to the category
of abelian presheaves on $Y_\etale$. Before we define $f_!$ as the
sheafification of this functor, let us check that it agrees with
the construction in Section \ref{section-compact-support}
and with the construction in
\'Etale Cohomology, Section \ref{etale-cohomology-section-extension-by-zero}
when both apply.
\begin{lemma}
\label{lemma-finite-support-f-shriek-separated}
Let $f : X \to Y$ be a separated and locally quasi-finite morphism
of schemes. Functorially in $\mathcal{F} \in \textit{Ab}(X_\etale)$
there is a canonical isomorphism(!)
$$
f_{p!}\mathcal{F} \longrightarrow f_!\mathcal{F}
$$
of abelian presheaves which identifies the sheaf
$f_!\mathcal{F}$ of Definition \ref{definition-f-shriek-separated}
with the presheaf $f_{p!}\mathcal{F}$ constructed above.
\end{lemma}
\begin{proof}
Let $V$ be an object of $Y_\etale$. If $Z \subset X_V$ is locally closed
and finite over $V$, then, since $f$ is separated, we see that
the morphism $Z \to X_V$ is a closed immersion. Moreover, if
$Z_i$, $i = 1, \ldots, n$ are closed subschemes of $X_V$ finite
over $V$, then $Z_1 \cup \ldots \cup Z_n$ (scheme theoretic union)
is a closed subscheme finite over $V$. Hence in this case the colimit
(\ref{equation-colimit-definition}) defining $f_{p!}\mathcal{F}(V)$
is directed and we find that $f_{!p}\mathcal{F}(V)$ is simply equal
to the set of sections of $\mathcal{F}(X_V)$ whose support is finite over $V$.
Since any closed subset of $X_V$ which is proper over $V$ is
actually finite over $V$ (as $f$ is locally quasi-finite)
we conclude that this is equal to $f_!\mathcal{F}(V)$
by its very definition.
\end{proof}
\begin{lemma}
\label{lemma-finite-support-stalk}
Let $f : X \to Y$ be a morphism of schemes which is locally quasi-finite.
Let $\overline{y} : \Spec(k) \to Y$ be a geometric point.
Functorially in $\mathcal{F}$ in $\textit{Ab}(X_\etale)$ we have
$$
(f_{p!}\mathcal{F})_{\overline{y}} =
\bigoplus\nolimits_{f(\overline{x}) = \overline{y}} \mathcal{F}_{\overline{x}}
$$
\end{lemma}
\begin{proof}
Recall that the stalk at $\overline{y}$ of a presheaf is defined by the
usual colimit over \'etale neighbourhoods $(V, \overline{v})$
of $\overline{y}$, see \'Etale Cohomology, Definition
\ref{etale-cohomology-definition-stalk}. Accordingly
suppose $s = \sum_{i = 1, \ldots, n} (Z_i, s_i)$ as in
(\ref{equation-formal-sum}) is an element of $f_{p!}\mathcal{F}(V)$
where $(V, \overline{v})$ is an \'etale neighbourhood of $\overline{y}$.
Then since
$$
X_{\overline{y}} = (X_V)_{\overline{v}} \supset Z_{i, \overline{v}}
$$
and since $s_i$ is a section of $\mathcal{F}$ on an open neighbourhood
of $Z_i$ in $X_V$ we can send $s$ to
$$
\sum\nolimits_{i = 1, \ldots, n}
\sum\nolimits_{\overline{x} \in Z_{i, \overline{v}}}
\left(\text{class of }s_i\text{ in }\mathcal{F}_{\overline{x}}\right)
\quad\in\quad
\bigoplus\nolimits_{f(\overline{x}) = \overline{y}} \mathcal{F}_{\overline{x}}
$$
We omit the verification that this is compatible with restriction
maps and that the relations (\ref{item-sum}) $(Z, s) + (Z, s') - (Z, s + s')$
and (\ref{item-sub}) $(Z, s) - (Z', s)$ if $Z \subset Z'$ are sent to zero.
Thus we obtain a map
$$
(f_{p!}\mathcal{F})_{\overline{y}}
\longrightarrow
\bigoplus\nolimits_{f(\overline{x}) = \overline{y}} \mathcal{F}_{\overline{x}}
$$
\medskip\noindent
Let us prove this arrow is surjective. For this it suffices to pick
an $\overline{x}$ with $f(\overline{x}) = \overline{y}$ and prove that
an element $s$ in the summand $\mathcal{F}_{\overline{x}}$ is in the
image. Let $s$ correspond to the element $s \in \mathcal{F}(U)$
where $(U, \overline{u})$ is an \'etale neighbourhood of $\overline{x}$.
Since $f$ is locally quasi-finite, the morphism $U \to Y$
is locally quasi-finite too. By More on Morphisms, Lemma
\ref{more-morphisms-lemma-etale-makes-quasi-finite-finite-multiple-points-var}
we can find an \'etale neighbourhood $(V, \overline{v})$ of
$\overline{y}$, an open subscheme
$$
W \subset U \times_Y V,
$$
and a geometric point $\overline{w}$ mapping to $\overline{u}$ and
$\overline{v}$ such that $W \to V$ is finite and $\overline{w}$ is the
only geometric point of $W$ mapping to $\overline{v}$. (We omit the translation
between the language of geometric points we are currently using and the
language of points and residue field extensions used in the
statement of the lemma.) Observe that $W \to X_V = X \times_Y V$
is \'etale. Choose an affine open neighbourhood $W' \subset X_V$
of the image $\overline{w}'$ of $\overline{w}$. Since $\overline{w}$
is the only point of $W$ over $\overline{v}$ and since $W \to V$
is closed, after replacing $V$ by an open neighbourhood of $\overline{v}$,
we may assume $W \to X_V$ maps into $W'$. Then $W \to W'$ is finite and
\'etale and there is a unique geometric point $\overline{w}$ of $W$
lying over $\overline{w}'$. It follows that $W \to W'$ is an open immersion
over an open neighbourhood of $\overline{w}'$ in $W'$, see
\'Etale Morphisms, Lemma \ref{etale-lemma-finite-etale-one-point}.