-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtest.py
167 lines (150 loc) · 6.01 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Copyright (c) 2021, Hitachi America Ltd. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import os
import click
import torch
import transformers
from transformers import AutoConfig, AutoTokenizer
from contract_nli.conf import load_conf
from contract_nli.dataset.dataset import load_and_cache_examples, \
load_and_cache_features
from contract_nli.evaluation import evaluate_all
from contract_nli.model.classification import BertForClassification
from contract_nli.model.identification_classification import \
MODEL_TYPE_TO_CLASS
from contract_nli.postprocess import format_json, compute_prob_calibration_coeff
from contract_nli.predictor import predict, predict_classification
logger = logging.getLogger(__name__)
@click.command()
@click.option('--dev-dataset-path', type=click.Path(exists=True), default=None)
@click.argument('model-dir', type=click.Path(exists=True))
@click.argument('dataset-path', type=click.Path(exists=True))
@click.argument('output-prefix', type=str)
def main(dev_dataset_path, model_dir, dataset_path, output_prefix):
conf: dict = load_conf(os.path.join(model_dir, 'conf.yml'))
device = torch.device("cuda" if torch.cuda.is_available() and not conf['no_cuda'] else "cpu")
n_gpu = 0 if conf['no_cuda'] else torch.cuda.device_count()
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("Loading models with following conf %s",
{k: v for k, v in conf.items() if k != 'raw_yaml'})
tokenizer = AutoTokenizer.from_pretrained(
model_dir,
do_lower_case=conf['do_lower_case'],
cache_dir=conf['cache_dir'],
use_fast=False
)
config = AutoConfig.from_pretrained(
model_dir,
cache_dir=conf['cache_dir']
)
if conf['task'] == 'identification_classification':
model = MODEL_TYPE_TO_CLASS[config.model_type].from_pretrained(
model_dir, cache_dir=conf['cache_dir']
)
else:
model = BertForClassification.from_pretrained(
model_dir, cache_dir=conf['cache_dir'])
model.to(device)
if dev_dataset_path is not None:
if conf['task'] != 'identification_classification':
raise click.BadOptionUsage(
'--dev-dataset-path',
'--dev-dataset-path cannot be used when the task is not identification_classification')
examples = load_and_cache_examples(
dev_dataset_path,
local_rank=-1,
overwrite_cache=True,
cache_dir='.'
)
dataset, features = load_and_cache_features(
dev_dataset_path,
examples,
tokenizer,
max_seq_length=conf['max_seq_length'],
doc_stride=conf.get('doc_stride', None),
max_query_length=conf['max_query_length'],
dataset_type=conf['task'],
symbol_based_hypothesis=conf['symbol_based_hypothesis'],
threads=None,
local_rank=-1,
overwrite_cache=True,
labels_available=True,
cache_dir='.'
)
all_results = predict(
model, dataset, examples, features,
per_gpu_batch_size=conf['per_gpu_eval_batch_size'],
device=device, n_gpu=n_gpu,
weight_class_probs_by_span_probs=conf[
'weight_class_probs_by_span_probs'])
calibration_coeff = compute_prob_calibration_coeff(
examples, all_results)
else:
calibration_coeff = None
examples = load_and_cache_examples(
dataset_path,
local_rank=-1,
overwrite_cache=True,
cache_dir='.'
)
dataset, features = load_and_cache_features(
dataset_path,
examples,
tokenizer,
max_seq_length=conf['max_seq_length'],
doc_stride=conf.get('doc_stride', None),
max_query_length=conf['max_query_length'],
dataset_type=conf['task'],
symbol_based_hypothesis=conf['symbol_based_hypothesis'],
threads=None,
local_rank=-1,
overwrite_cache=True,
labels_available=True,
cache_dir='.'
)
if conf['task'] == 'identification_classification':
all_results = predict(
model, dataset, examples, features,
per_gpu_batch_size=conf['per_gpu_eval_batch_size'],
device=device, n_gpu=n_gpu,
weight_class_probs_by_span_probs=conf['weight_class_probs_by_span_probs'],
calibration_coeff=calibration_coeff)
else:
all_results = predict_classification(
model, dataset, features,
per_gpu_batch_size=conf['per_gpu_eval_batch_size'],
device=device, n_gpu=n_gpu)
result_json = format_json(examples, all_results)
with open(output_prefix + 'result.json', 'w') as fout:
json.dump(result_json, fout, indent=2)
with open(dataset_path) as fin:
test_dataset = json.load(fin)
metrics = evaluate_all(test_dataset, result_json,
[1, 3, 5, 8, 10, 15, 20, 30, 40, 50],
conf['task'])
logger.info(f"Results@: {json.dumps(metrics, indent=2)}")
with open(output_prefix + 'metrics.json', 'w') as fout:
json.dump(metrics, fout, indent=2)
if __name__ == "__main__":
main()