This repository has been archived by the owner on Jan 5, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalc_prod_v2.2 FINAL.py
759 lines (633 loc) · 33.1 KB
/
calc_prod_v2.2 FINAL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
print 'Initializing...'
import numpy as np
import logging
import logging.config
import time
import os
import glob
#import scipy.io
from scipy.io import loadmat
import datetime
import math
import matplotlib.dates
import yaml
import sys
import pandas as pd
#import argparse
version = '1.2'
'''Change log
version 1.1: Delivered to customer
version 1.2: Rectified error: When wind point is filtered out the total weight is adjusted.
version 2.0: Added iceloss calculations
version 2.1: Rectified error: In version 2.0, the iceloss variable was not set. Iceloss defined in line 115.
'''
# -- ## -- ### -- ## -- # Tillagte valg # -- ## -- ### -- ## -- #
# Her kan vi oppgi hvordan modellen skal kjoeres
area = ['europe'] # [europe, nordic, nordic_icing, norway, solar, parker_norge, parker_norge_icing, parker_norge_i_drift, sweeden] kan brukes til flere eller ett område
solar_tracker = True # velger om vi kjører med tracker eller ikke [True, False]
startyear = 2016 # 1950-2016 (fra og med)
endyear = 2017 # 1950-2017 (frem til, uten) kanskje legge til +1
# Utskriftsalternativer
orginal_csv = True # Utskrift ubehandlet[True, False]
BID = False # Velger om BID-filer skal lages [True, False]
samlast = False # Utsrift tilpasset samlast [True, False]
# Dette kan endres for spesielt interesserte
indir = 'data/' # velger mappen hvor vaerdataen ligger (matlab-filer) [data, data_smooth]
outdir = 'exports/' # velger hvor dataen skal lagres
config_dir = 'config/' # velger hvor konfigurasjonsfilene ligger
# --- ## --- Kjeller Vindteknikk sine funksjoner --- ## --- #
# Timing
start_time = time.time()
# Setup logging
logging.config.fileConfig('./logging.conf',disable_existing_loggers=False)
logger = logging.getLogger(sys.argv[0])
logger.info('Running version %s' % version)
def calc_point(reg_file,startyear,endyear,indir,outdir,config_dir):
'''
Write in description of what this code does.
'''
# Read file with points in the region
namelist, region = read_region(config_dir+reg_file)
namelist.sort() # Sort namelist so that region with same name is added together
region_list = np.unique([x['name'] for x in region.values()]) # List of unique points in region
logger.debug(region_list)
logger.debug(namelist)
logger.info('Calculating production for region in config file: %s' % reg_file)
if not os.path.exists(outdir):
os.makedirs(outdir)
# Setting directory for input files
if 'solar' in reg_file:
indir = indir + 'solar/'
energy_type = 'solar'
config_dir = ''.join([config_dir,'solar_panels/'])
elif 'park' in reg_file:
indir = indir + 'norge_park/'
energy_type = 'wind'
config_dir = ''.join([config_dir,'turbines/'])
do_wind_f = False
else:
indir = indir + 'wind/'
energy_type = 'wind'
config_dir = ''.join([config_dir,'turbines/'])
do_wind_f = True # Filtering of points
logger.info('Energy type: %s.' % energy_type)
logger.info('Reading files from directory: %s.' % indir )
tmp_point_name = ''
t1 = datetime.date(startyear, 01, 01)
t2 = datetime.date(endyear, 01, 01)
# Read all points in namelist and calculate the production based
for key in namelist:
logger.debug("Start calculating production for %s." % key)
if 'park' in reg_file:
name = ''.join(['*',key,'*'])
else:
name = ''.join(['*_',key,'_*'])
logger.debug('name is %s' % name)
file = ''.join(glob.iglob(os.path.join(indir, name)))
if file:
logger.info('Reading file %s ...' % file)
#data = scipy.io.loadmat(file)
data = loadmat(file)
point = region[key]
point_name =point['name']
logger.debug('Writing point: %s ' % point_name)
total_val = 0
if energy_type == 'solar':
weight = point['weight']
panel = point['panel']
panelfile = ''.join([config_dir,panel,'.yml'])
logger.info('Calculating production for point %s with weight %.2f. The point belongs to %s.'% (key, weight, point_name))
jdate, swdown, prod, lat, lon = load_picky_solar(data,t1,t2,panelfile)
if tmp_point_name == '':
logger.info('First point of solar written')
outdata = np.zeros(len(jdate), 'a20,' + ','.join(len(region_list)*['f4']))
outdata.dtype.names = ['date'] + list(region_list)
outdata[:]=np.nan
if point_name != tmp_point_name:
outdata[point_name] = np.around(prod*weight,decimals=4)
tmp_point_name = point_name
else: # Point already exists
outdata[point_name]= outdata[point_name] + np.around(prod*weight,decimals=4)
elif energy_type == 'wind':
turbine_list = point['turbine']
turb_weight_list = point['turb_weight']
weight = float(point['weight'])
iceloss = 0.0
if 'icing' in reg_file:
iceloss = float(point['iceloss'])
logger.info('Calculating production for point %s with weight %.2f. The point belongs to %s.'% (key, weight, point_name))
logger.info('Turbine configurations: %s, Weight: %s.' % (turbine_list, turb_weight_list))
for i in range(len(turbine_list)):
turbine = turbine_list[i]
turb_weight = float(turb_weight_list[i])
turbfile = ''.join([config_dir,turbine,'.yml'])
jdate, ws, prod, lat, lon = load_picky(file,data,turbfile,do_wind_f,t1,t2,config_dir) # Calculate production with the current turbfile
# Calculate iceloss if it is over 0%
if iceloss > 0.0:
iceFile = ''.join(glob.iglob(os.path.join('icing/', name)))
iceData = loadmat(iceFile)
odat = iceData['odat']
val = odat[0,0]
iceDate = val["jdate"].squeeze()
powercorrection = val["Powercorrection"].squeeze()
Mstd = val["Mstd"].squeeze()
powerloss = 1 - powercorrection
tstart = matplotlib.dates.date2num(t1) + 366
tend = matplotlib.dates.date2num(t2) + 366
ind = (iceDate >= tstart)*(iceDate <= tend)
if np.mean(powerloss) < iceloss:
I = np.where((Mstd >10) & (powerloss < 0.1))
powerloss[I]=0.1
logger.debug('Mean of powerloss: %.4f, configured ice loss: %.4f' % (np.mean(powerloss), iceloss))
scale = iceloss/np.mean(powerloss)
powerloss = powerloss*scale
powerloss[powerloss>1]=1
logger.info('Mean of scaled ice loss: %.4f' % np.mean(powerloss))
logger.info('Mean of production without ice loss is %.2f' % np.mean(prod))
prod = prod*(1-powerloss[ind])
logger.info('Mean of production with ice loss is %.2f' % np.mean(prod))
if tmp_point_name == '':
# Initializing outdata
outdata = np.zeros(len(jdate), 'a20,' + ','.join(len(region_list)*['f4']))
outdata.dtype.names = ['date'] + list(region_list)
outdata[:]=np.nan
if point_name != tmp_point_name:
if sum(prod)==0.0:
logger.info('Production is not calculated for this point.')
else:
logger.info('Writing first point to %s.' % (point_name))
outdata[point_name] = np.around(prod*weight*turb_weight,decimals=4)
tmp_point_name = point_name
logger.info('tmp_point_name = %s ' % tmp_point_name)
else:
logger.info('Adding an additional point, %s, to %s, with weight %.2f.' % (key, point_name, float(weight)))
if sum(prod)==0.0:
logger.debug('Production is not calculated for this point.')
else:
outdata[point_name] = outdata[point_name] + np.around(prod*weight*turb_weight,decimals=4) # Adding prod*weight to the point
logger.debug('Number of columns in outdata is %d ' % (outdata.ndim))
else:
logger.debug('There is no file to be read for this point.')
# Convert jdate to string date format
if tmp_point_name == '':
logger.info('No file has been read, please check the config file.')
exit()
datevec = matplotlib.dates.num2date(jdate - 366)
date_str = [str(datevec[i]) for i in range(len(datevec))]
date_str = [word[:-12] for word in date_str]
outdata['date']=date_str
outfile_region = np.char.rstrip(reg_file,'.yml')
outfile = ''.join([outdir, str(outfile_region), '_prod_', str(startyear),'_', str(endyear), '.csv']) # navn på fil
# Writing data to file
if orginal_csv == True:
with open(outfile, 'wb') as f:
header_line = 'date,'+','.join(region_list) + '\n'
f.write(bytes(header_line))
np.savetxt(f, outdata,fmt='%s',newline=os.linesep,delimiter=',')
f.close
# print samlast and BID
if (BID == True or samlast == True):
df = pd.DataFrame(outdata)
df['date'] = pd.to_datetime(df['date'], format="%Y-%m-%d") # from string to date-format
df.set_index('date', inplace=True) # date as index
# new index starting 1.1 the first year, endig last full year the 31.12, every hour
ix = pd.DatetimeIndex(start=datetime.datetime(df.index.year[0], 1, 1), end=datetime.datetime(df.index.year[-2], 12, 31, 23), freq='H')
df = df.reindex(ix, method = 'nearest') # if values are missing, we use the nearest value
df = df[~((df.index.month == 2) & (df.index.day == 29))] # remove leap days
area_names = df.columns # make a list of column names and loop over them
for i in range(len(area_names)):
df_column = pd.DataFrame(df[area_names[i]]) # make new df for each column
if BID == True: # bid format
df_bid = df_column
df_bid['year'] = df_bid.index.year #new column with year
df_bid['hour'] = list(range(1,8761,1))*len(set(df_bid['year'])) #hour is hour nr. that year: 1-->8760
df_bid = df_bid.pivot(columns='year', values=str(area_names[i]), index='hour') # years as columns and hour of the year as index
outfile_bid = ''.join([outdir, 'BID_', str(area_names[i]), '_', str(outfile_region), '_prod_', str(startyear),'_', str(endyear), '.csv']) #name file
df_bid.to_csv(str(outfile_bid), sep=';', header=False, index=False) #save file
if samlast == True: #samlast format
df_sam = df_column
df_sam = df_sam[~((df_sam.index.month == 12) & (df_sam.index.day == 31))] # delete 31.12
df_sam['hour'] = list(range(1,25,1))*(len(df_sam)/24) # hour that day 1-->24
df_sam['day'] = list(np.repeat(list(range(1,len(set(df_sam.index.date))+1,1)),24)) # day nr in whole df
# setter header med informasjon
info = [("Number of year", 'Start year', 'Number of weeks','Start week','End week', 'Start day','Type data (Vind=1, Tilsig=2)','Type resolution (Week=1, Day=2, Hour=3)'),(len(set(df_sam.index.year)),df_sam.index.year[0],52,1,52,0,1,3),('Series with hour resolution','','','','','','','')]
df_sam = df_sam.pivot(columns='hour', values=str(area_names[i]), index='day') # day nr in df as index and hour as columns
df_header = pd.DataFrame(data=info,columns=list(df_sam.columns[:8])) # make a df that we append on top of df_sam
df_samlast = pd.concat([df_header, df_sam], ignore_index=True).fillna('')
outfile_samlast = ''.join([outdir, 'samlast_', str(area_names[i]), '_', str(outfile_region), '_prod_', str(startyear),'_', str(endyear), '.csv'])
df_samlast.to_csv(str(outfile_samlast), sep=';', header=False, index=False) # save as csv without header or index
def load_picky_solar(mat,t1,t2,configfile):
from sunposition import sunpos
jdate = mat["jdate"].squeeze()
lon = mat["wrflon"]
lat = mat["wrflat"]
hgt = mat['hgt']
swdown = mat['data']
lon = np.mean(lon)
lat = np.mean(lat)
hgt = np.mean(hgt)
# Only use the data from t1 to t2
tstart = matplotlib.dates.date2num(t1) + 366
tend = matplotlib.dates.date2num(t2) + 366
ind = (jdate >= tstart)*(jdate <= tend)
jdate = jdate[ind]
swdown = swdown[ind]
swdown = np.mean(swdown,axis=1) #
datevec = matplotlib.dates.num2date(jdate-366)
day_of_year = np.zeros([len(jdate)])
for i in range(len(jdate)): day_of_year[i] = datevec[i].timetuple().tm_yday
# Find azimuth, zenith, declination, angle
logger.info('Compute the coordinates of the sun as viewed at the given time and location. This may take some time...')
coords = np.zeros((len(jdate),5))
coords = sunpos(datevec,lat,lon,hgt)
az = coords[:,0] #coords[...,0] = observed azimuth angle, measured eastward from north
zen = coords[:,1] #coords[...,1] = observed zenith angle, measured down from vertical matlab.zen
delta = coords[:,3] #coords[...,3] = topocentric declination (delta?) Same as matlab.delta
omega = coords[:,4]+360 #coords[...,4] = topocentric hour angle (omega?) Same as matlab.omega -360
logger.debug('Computiation of coordinates of the sun is finished.')
def cost(angle): return np.cos(np.radians(angle))
def sint(angle): return np.sin(np.radians(angle))
def tant(angle): return np.tan(np.radians(angle))
#bbeam
b00 = 1367
grad = swdown
eps0 = 1 + 0.033*cost((360*day_of_year)/365)
# Extraterrestial radiation
b = b00*eps0*cost(zen)
sun_alt = 90-zen
b[sun_alt<=0]=0
# Clearness index
kt = np.zeros(b.shape)
kt[b>0] = grad[b>0]/b[b>0]
kt[kt>1] = 0
# Diffuse indices
fd = 0.868 + 1.335*(kt) - 5.782*(kt**2) + 3.721*(kt**3)
fd[kt<=0.13]=0.952
fd[kt>0.8] = 0.141
drad = grad*fd
# Beam radiation (Global radiation - diffuse radiation)
brad = grad - drad # beam radiation
bbeam = brad/cost(zen)
bbeam[bbeam<0]=0
bbeam[bbeam>2000]=0
efficiency = 0.1
p_inst = 1
area = p_inst*0.00875
derate = 0.77
#set panel orientation
panel_matrix_az, panel_matrix_tlt, panel_matrix_weight,azimuth_median,tilt_median = read_solar_panel(configfile)
if not azimuth_median:
azimuth_median = 0
if not tilt_median:
tilt_median = lat
logger.info('Panel is directed with azimuth at median %d and tilt at median %d' % (azimuth_median, tilt_median))
panel_matrix_az = azimuth_median + panel_matrix_az
panel_matrix_tlt = tilt_median + panel_matrix_tlt
prod = np.zeros(len(bbeam))
# solar tracker is considered
# TIPS: https://www.e-education.psu.edu/eme810/node/576
# https://www.e-education.psu.edu/eme810/node/485
if solar_tracker == False: # use the standard model if False
for i in range(3):
for j in range(3):
panel_az = panel_matrix_az[i,j]
panel_slp = panel_matrix_tlt[i,j]
weight = panel_matrix_weight[i,j]
#angel between beam and panel
costh_s = sint(delta)*sint(lat)*cost(panel_slp) - np.sign(lat)*sint(delta)*cost(lat)* sint(panel_slp)*cost(panel_az) + cost(delta)*cost(omega)*cost(lat)*cost(panel_slp) + np.sign(lat)*cost(delta)*cost(omega)*sint(lat)*sint(panel_slp)* cost(panel_az) + cost(delta)*sint(omega)*sint(panel_az)*sint(panel_slp)
bbeam_panel = bbeam*np.maximum(0,costh_s)
drad_panel = drad*(1+cost(panel_slp))/2
rad_panel = bbeam_panel + drad_panel
prod = prod + weight*rad_panel*efficiency*area*derate
elif solar_tracker == True:
costh_s_tracker = 1 # strålen treffer 90 grader på panelet hele tiden, ergo er cos av denne vinkelen lik 1
bbeam_panel = bbeam*costh_s_tracker # bbeam sørger for at dette blir null når solen er nede
drad_panel = drad * (1+cost(zen)) / 2 # setter zentih angle som tilt
rad_panel = bbeam_panel + drad_panel
prod = rad_panel*efficiency*area*derate
return jdate, swdown, prod, lat, lon
def load_picky(fname,mat,turbfile, do_wind_f,t1,t2,config_dir):
''' This function reads the data from .mat file
1. Read variables, jdate, FF, lmask, hgt, lon and lat for a point.
2. Interpolate FF to the given height for both reference data and 'site' data.
3. Find syntesized long term data set
4. Filter out points in the data set that has low mean wind speed, high mean wind speed or are not onshore/offshore (depending on offshore/onshore point)
5. Calculate production (prod), production with wake loss (prod_wake), production prod_loss, p_mat_use =
MAREN FREDBO 2016.12.14
INPUT:
file: .mat-file to read
turb_file: turbfile to read
OUTPUT:
'''
height, vel_cl, pmat, loss, w_loss, scale_w_loss = read_turbine(turbfile)
levels = np.array([30.,80.,100., 150., 180.])
lev1, lev2 = get_levels(levels,height) # Find levels to interpolate between
#logger.info('Reading file %s ...' % fname)
jdate = mat["jdate"].squeeze()
FF1 = mat['FF'+(str(int(lev1)))]
FF1_r = mat['FF'+(str(int(lev1))) + '_r'] # Long (reference) term data
rdate = mat["jdate_r"].squeeze()
hgt = mat['hgt'].squeeze()
lmask = mat['lmask'].squeeze()
lon = mat["wrflon"]
lat = mat["wrflat"]
logger.debug('Number of grid points to be read is %d ' % hgt.size)
# Interpolate FF to the given height
if lev1 == lev2:
# No need for interpolation, FF1 and FF_r can be used directly.
logger.debug('No interpolation needed. FF at level %d is used directly.' % lev1)
site = FF1
ref = FF1_r
else:
# Interpolate to find wind speed at the given height
FF2 = mat['FF'+(str(int(lev2)))]
FF2_r = mat['FF'+(str(int(lev2))) + '_r']
sz = FF1.shape
sz2 = FF1_r.shape
site = np.empty([sz[0],sz[1]])
ref = np.empty([sz2[0],sz2[1]])
#import ipdb;ipdb.set_trace() # Denne vil lagre alle variabler naar man kommer til dette steget. MAA FJERNES.
for i in range(hgt.size):
logger.debug('Interpolating for point number %d' % i)
site[:,i] = interp_FF(np.squeeze(FF1[:,i]),np.squeeze(FF2[:,i]),np.array([lev1, lev2]),height)
ref[:,i] = interp_FF(np.squeeze(FF1_r[:,i]),np.squeeze(FF2_r[:,i]),np.array([lev1, lev2]),height)
# Remove nans from dataset
site = site[~np.isnan(site).any(axis=1)]
jdate = jdate[~np.isnan(site).any(axis=1)]
logger.debug('Filtered out ' + str(sum(np.isnan(site).any(axis=1))) + ' NaN elements from site data.')
ind = np.in1d(rdate,jdate) # Find period where jdate and rdate intersect
ru = ref[ind,:] # reference short term
# Find syntesized series if rdate > jdate
sul = np.zeros((len(rdate),hgt.size))
nvel = 30 # Number of bins to be used in syntetization
if len(rdate)>len(jdate):
for i in range(hgt.size):
sul[:,i] = synt_one_sec(site[:,i],ru[:,i],ref[:,i],rdate,nvel)
logger.debug('Syntesized point number ' + str(i) + ' from date ' + str(matplotlib.dates.num2date(rdate[0] - 366)) + ' to date ' + str(matplotlib.dates.num2date(rdate[-1] - 366)))
else:
logger.debug("Using 18 km directly. The size of jdate is %d and the size of rdate is %d" % (len(jdate),len(rdate)))
sul = site;
# Filter points with low or high wind speeds. Reference period for filtering wind is fixed from dstart to dend (1.1.1990-1.1.2013). Define start and end of period that are fixed (for filtering routine)
lt_t1 = datetime.date(1990, 01, 01)
lt_t2 = datetime.date(2013, 01, 01)
ltstart = matplotlib.dates.date2num(lt_t1) + 366
ltend = matplotlib.dates.date2num(lt_t2) + 366
logger.debug('Filter points with mean wind speeds out of range. Fixed period used for filtering routine is [%s, %s]' % (str(t1),str(t2)))
lt_ind = np.where(np.logical_and(rdate>=ltstart,rdate<=ltend))
mu = np.squeeze(np.mean(sul[lt_ind,:],axis=1))
if do_wind_f == False:
muu = np.ones(mu.squeeze().size)*8
else:
muu = mu
REM = filter_wind(fname,muu,lmask) # REM equals zero means that the point is not filtered out
# Production calculation. Find production estimates for all points
prod = np.zeros([len(rdate),hgt.size])
prod_wake = np.zeros([len(rdate),hgt.size])
prod_loss = np.zeros([len(rdate),hgt.size])
if mu.size == 1:
for i in range(hgt.size): prod[:,i], prod_wake[:,i], prod_loss[:,i] = tseries_prod(rdate,sul[:,i],mu,vel_cl,pmat,loss,w_loss,scale_w_loss,config_dir)
else:
for i in range(hgt.size): prod[:,i], prod_wake[:,i], prod_loss[:,i] = tseries_prod(rdate,sul[:,i],mu[i],vel_cl,pmat,loss,w_loss,scale_w_loss,config_dir)
tstart = matplotlib.dates.date2num(t1) + 366
tend = matplotlib.dates.date2num(t2) + 366
ind = (rdate >= tstart)*(rdate <= tend)
if muu.size > 1: # If picky
lat_all = np.mean(lat)
lon_all = np.mean(lon)
if sum(REM>0)== muu.size:
logger.info('WARNING: This point is filtered out (too low/high mean wind speed or offshore/onshore point)')
ws_all = np.zeros([len(rdate[ind]),1])
prod_all = np.zeros([len(rdate[ind]),1])
else:
ws_filt = sul[:,REM<1] # Filter out points from filtering routine
prod_filt = prod_loss[:,REM<1] # Filter out points from filtering routine
ws_all = np.mean(ws_filt[ind,:],axis=1)
prod_all = np.mean(prod_filt[ind,:],axis=1)
else:
ws_all = sul[ind] # Use only
prod_all = prod_loss[ind]
lat_all = lat
lon_all = lon
logger.debug('REM is %d ' % REM)
return rdate[ind], ws_all.squeeze(), prod_all.squeeze(), lat_all.squeeze(), lon_all.squeeze()
def tseries_prod(jdate,data,mean_speed,vel_cl,pmat,loss,w_loss,scale_w_loss,config_dir):
''' This function calculates production from a timeseries of wind ("data").
INPUT:
jdate: Date vector, 1-dim np.array
data: Vector with wind speed. 1-dim np.array
mean_speed: Mean speed for each point, 1 dim np.array
vel_cl:
pmat:
loss:
w_loss:
scale_w_loss:
config_dir:
OUTPUT:
prod: Production without any losses
prod_wake: Estimated loss due to wake
prod_loss: Estimated production including loss
'''
from scipy.interpolate import interp1d
if isinstance(pmat,str): # If pmat is string then get the .csv-file
pmat = np.genfromtxt(config_dir+pmat,delimiter=',')
vel_choose = pmat[1:,0]
pmat = np.transpose(pmat[1:,1:]) # Remove first column and first row of the array and transpose
prod_wake = np.zeros(len(jdate))
prod = np.zeros(len(jdate))
p_mat_use = np.empty(len(vel_cl))
p_mat_use[:] = np.NAN
# Interpolation of production. This differs from the Matlab routine wich extrapolates
f_loss = interp1d(vel_cl,w_loss,bounds_error=False,fill_value=0)
if isinstance(pmat,np.ndarray): # pmat is array
min_val = abs(vel_choose - mean_speed).argmin()
p_mat_use = pmat[:,min_val] # pmat to be used
else:
p_mat_use = pmat
# Interpolation of production. This differs from the Matlab routine as it does not extrapolate for velocities larger and less than vel_cl. bounds_error=False assigns out fo bounds values assignes fill_value. Using interp1d in combination with extrap1d would give the same results as in Matlab.
f_prod = interp1d(vel_cl,p_mat_use,bounds_error=False,fill_value=0)
prod = f_prod(data)
prod_wake = f_loss(data) # Interpolation of f_loss
prod_wake = prod_wake*scale_w_loss # Tuning of wake loss
prod_loss = prod*(1-loss) # Substract losses
prod_loss = prod_loss*(1-prod_wake) # Substract wake loss
return prod, prod_wake, prod_loss
def get_levels(levels, height):
''' Find levels to interpolate between'''
if ~np.any(levels>=height) or ~np.any(levels<=height):
logger.info('Height is out of range. Please select a height between %.f and %.f.' % (levels[0],levels[-1]))
sys.exit()
else:
lev1 = levels[np.max(np.where(levels<=height))]
lev2 = levels[np.min(np.where(levels>=height))]
logger.debug('The wind series are interpolated to height = %.f. Level 1 is %d and level 2 is %d .' % (float(height),lev1,lev2))
return lev1, lev2
def stepf(x):
stepf = []
for num in x:
if num <= 0:
stepf.append(0)
elif num >= 1:
stepf.append(1)
else:
stepf.append(1./(1. + math.exp((1./(num-1))+1./num)))
stepf = np.array(stepf)
return stepf
def filter_wind(fname, muu, lmask):
''' This routine filter out point that have lower wind speed than 6 m/s or higher than 10 m/s (12 ms/s if the point is offshore.
REM = 5x(Point is offshore/onshore) + 1x(point has mean wind speed below minvel) + 1x(point has mean wind speed above maxvel)
REM equal to zero means that the point shall not be filtered out.
'''
logger.debug('Filter routine for wind will discard points with low/high wind speeds and points thata are offshore/onshore.')
if 'Offshore' in fname:
isoffshore = 1
else:
isoffshore = 0;
minvel = 6
maxvel = 10 + 2*isoffshore
REM = np.zeros(muu.size)
if muu.size > 1:
REM[lmask==isoffshore] = 5
REM[muu<minvel] = REM[muu<minvel] + 1
REM[muu>maxvel] = REM[muu>maxvel] + 1
logger.debug('Total %d points flagged. (%d) (%d < %d m/s), (%d > %d m/s) and (%d with LMASK: %d) ' % (muu.size, sum(REM>0), sum(muu<minvel), minvel, sum(muu>maxvel), maxvel, sum(lmask==isoffshore), isoffshore))
else:
if muu < minvel: REM = 1
elif muu > maxvel: REM = 1
elif lmask == isoffshore: REM = 5
else: REM = 0
return REM
def synt_one_sec(su,ru,rul,rdatel,nvel):
''' Function that syntesize a short time series for a long time period.
Parameters su,sd,ru,rd,rul,rdl,rdatel,number_sec_synt are all required.
su - wind speed vector at site
ru - wind speed vector at ref (sim site)
rul - long-term wind speed vector at ref
rdatel - long-term numeric date index of the reference time series
number_sec_synt - number of sectors used by the methodology
MAREN FREDBO 2016.12.14
'''
from scipy.interpolate import interp1d
ref_sort = sorted(ru)
site_sort = sorted(su)
logger.debug('Length of ref is ' + str(len(ref_sort)) + ', which should be the same as site: ' + str(len(site_sort)))
end = len(site_sort)
bin_size = end/nvel
vel_ref = [0]
vel_site = [0]
# Find mean in each bin
for j in range(nvel):
i1 = int(round(bin_size*j))
i2 = int(round(bin_size*(j+1)-1))
mean_bin = np.mean(ref_sort[i1:i2])
vel_ref.append(np.mean(ref_sort[i1:i2]))
vel_site.append(np.mean(site_sort[i1:i2]))
vel_site.append(50*vel_site[-1]/vel_ref[-1]) # Add high wind speed at end
vel_ref.append(50)
# Interpolate to find syntesized series for the long-term period
sul = interp1d(vel_ref,vel_site)(rul)
return sul
def interp_FF(FF_lev1,FF_lev2,zin,zout):
'''Function that return the interpolated wind speed at height zout
INPUT:
FF_lev1: FF at level 1, 1-dim np.array
FF_lev2: FF at level 2, 1-dim np.array
zin: height at level1 1 and level 2, 1-dim np.array
zout: height to find the interpolated values of FF
OUTPUT:
FFout: Interpolated FF at height zout, 1-dim np.array
'''
FF = np.empty([2,len(FF_lev1)])
FF[0,:] = FF_lev1
FF[1,:] = FF_lev2
# Remove indecies where FF_lev1 or FF_lev2 is NaN
FF_new=FF[:,~np.isnan(FF).any(axis=0)]
FF_new=FF_new[:,~(FF_new==0).any(0)]
alpha = np.log(FF_new[1,:]/FF_new[0,:])/np.log(float(zin[1])/float(zin[0]))
alpha = np.mean(alpha) # Find the mean of alpha
level = np.argmin(abs(zout-zin)) # Find nearest level
FFout = FF[level,:]*(zout/zin[level])**alpha
return FFout
def read_solar_panel(file):
try:
with open(file) as f:
panel = yaml.safe_load(f)
f.close()
azimuth = np.array(panel['azimuth'])
tilt = np.array(panel['tilt'])
weight_matrix = np.array(panel['weight'])
azimuth_median = panel['azimuth_median']
tilt_median = panel['tilt_median']
azimuth_matrix = np.zeros((len(azimuth),len(azimuth)))
tilt_matrix = np.zeros((len(azimuth),len(azimuth)))
for i in range(len(azimuth)):
azimuth_matrix[:,i] = azimuth
tilt_matrix[i,:]= tilt
if not np.sum(weight_matrix)==1:
logger.info('Warning: The sum of the weights in the solar panel configuration file do not add up to 1. Please make sure you\'re weights add up to 1.')
except:
logging.error('Error reading %s' % file)
sys.exit(1)
return azimuth_matrix, tilt_matrix, weight_matrix, azimuth_median, tilt_median
def read_turbine(file):
# Function that reads data fra turbine files
try:
with open(file) as f:
turb = yaml.safe_load(f)
f.close()
height = float(turb['height'])
wind_speed = turb['wind_speed']
pmat = turb['pmat']
loss = turb['loss']
w_loss = turb['w_loss']
scale_w_loss = turb['scale_w_loss']
if not height: height = np.NAN; logging.debug('No height specified in the turbine configuration file. Height is set to NaN.')
if not w_loss: w_loss = np.zeros(len(wind_speed)); logging.debug('No wake loss defined in turbine configuration file. Wake loss is set to 0.')
if not loss: loss = 0; logging.debug('No loss defined in turbine configuration file. Loss is set to 0.')
if not scale_w_loss: scale_w_loss = 1; logging.debug('No wake loss scale in turbine configuration file. Wake loss scale is set to 1')
except:
logging.error('Error reading %s' % file)
sys.exit(1)
return height, wind_speed, pmat, loss, w_loss, scale_w_loss
def read_region(regfile):
# Function that reads data from region files
try:
with open(regfile) as f:
region = yaml.safe_load(f)
f.close()
namelist = region.keys()
except:
logging.error('Error reading %s' % file)
sys.exit(1)
return namelist, region
'''
def main(argv=None):
"""Command line call"""
parser = argparse.ArgumentParser(
description="""Runs calc_prod.py. The program calculates production for wind and solar series.""",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--config', '-c', help='Config file with region and energy type',
default='europe.yml')
parser.add_argument('--startyear', '-s',type=int, help='Format yyyy. Year to start yyyy-01-01. Minimum 1950, maximum 2015',
default=2015)
parser.add_argument('--endyear', '-e',type=int, help='Format yyyy. Year to end yyyy-01-01. Minimum 1951, maximum 2016',
default=2016)
parser.add_argument('--indir', '-i', help='Input directory',
default='data/')
#parser.add_argument('--version', '-v', help='Print version and exit (%s).' % __VERSION__)
parser.add_argument('--outdir', '-o', help='Output directory',
default='exports/')
parser.add_argument('--configdir', '-cd', help='Config directory',
default='config/')
args = parser.parse_args(argv[1:])
if not os.path.exists(args.outdir):
os.makedirs(args.outdir)
#calc_point()
calc_point(reg_file=area+'.yml', startyear=startyear, endyear=endyear, indir=indir, outdir=outdir,config_dir=config_dir)
if __name__ == "__main__":
main(sys.argv)
'''
### Standard kjøring av ett område ###
#calc_point(reg_file=area+'.yml', startyear=startyear, endyear=endyear, indir=indir, outdir=outdir,config_dir=config_dir)
### LOOP over listen areas ###
for i in range(len(area)):
calc_point(reg_file=area[i]+'.yml', startyear=startyear, endyear=endyear, indir=indir, outdir=outdir,config_dir=config_dir)