-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathClassesIdentification.py
78 lines (72 loc) · 3.39 KB
/
ClassesIdentification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import Bidirectional, LSTM, Dense
from ClassesInferring import ClassesInferring
class ClassesIdentification(ClassesInferring):
def __init__(self, df, L_win, NFILTERS, lr, BATCH_SIZE, NB_EPOCH, month_test,
pred_cat, n_timesteps, BiNFILTERS, BiNB_EPOCHS, BiBATCH_SIZE):
ClassesInferring.__init__(self, df, L_win, NFILTERS, lr, BATCH_SIZE, NB_EPOCH,
month_test, pred_cat)
self.n_timesteps = n_timesteps
self.BiNFILTERS = BiNFILTERS
self.BiNB_EPOCHS = BiNB_EPOCHS
self.BiBATCH_SIZE = BiBATCH_SIZE
def train_test_split_for_class_identification(self):
ind = np.arange(1, 7)
ind_test = np.arange(7, 13)
X_train = self.table[self.table['MONTH'].isin(ind)]
X_train = X_train[X_train['id'].isin(self.CE.keys())]
X_test = self.table[self.table['MONTH'].isin(ind_test)]
X_test = X_test[X_test['id'].isin(self.CE.keys())]
num_months = X_test.groupby('id').size()
valid_months = [c_id for c_id, num in num_months.items() if num > 5]
X_test = X_test[X_test['id'].isin(valid_months)]
num_months_train = X_train.groupby('id').size()
valid_months_train = [c_id for c_id, num in num_months_train.items() if num > 5]
X_train = X_train[X_train['id'].isin(valid_months_train)]
test_ids = np.unique(X_test['id'])
return X_train, X_test, test_ids
def reshape_train_and_test(self):
list_X, list_X_test = [], []
X_train, X_test, test_ids = self.train_test_split_for_class_identification()
un_ids = np.unique(X_train['id'])
Y = np.zeros(len(un_ids))
un_ids_test = np.unique(X_test['id'])
for c_id in un_ids:
cur = X_train[X_train['id'] == c_id][self.pred_cat].values
list_X.append(cur)
for i in range(len(un_ids)):
if un_ids[i] in self.A:
Y[i] = 0
elif un_ids[i] in self.B:
Y[i] = 1
for i in range(len(list_X)):
list_X[i] = list_X[i][-6:]
X = np.vstack(list_X)
X = X.reshape(len(list_X), self.n_timesteps, 1)
Y = pd.get_dummies(Y).values
Y = Y.reshape(len(list_X), 2)
for c_id in un_ids_test:
cur = X_test[X_test['id'] == c_id][self.pred_cat].values
list_X_test.append(cur)
X_test_n = np.vstack(list_X_test)
X_test_n = X_test_n.reshape(len(list_X_test), self.n_timesteps, 1)
return X, Y, X_test_n, test_ids
def BiLSTM_model(self):
X, Y, X_test_n, test_ids = self.reshape_train_and_test()
model = Sequential()
model.add(Bidirectional(LSTM(self.BiNFILTERS, input_shape=(self.n_timesteps, 1),
return_sequences = False)))
model.add(Dense(2, activation = 'softmax'))
model.compile(loss = 'categorical_crossentropy', optimizer = 'adam', metrics = ['acc'])
model.fit(X, Y, epochs = self.BiNB_EPOCHS, batch_size = self.BiBATCH_SIZE,
verbose=2)
yhat = model.predict_classes(X_test_n)
pred_A, pred_B = [], []
for i in range(len(yhat)):
if (yhat[i] == 0):
pred_A.append(test_ids[i])
else:
pred_B.append(test_ids[i])
return pred_A, pred_B