Skip to content

Latest commit

 

History

History
387 lines (245 loc) · 12.1 KB

README.md

File metadata and controls

387 lines (245 loc) · 12.1 KB
About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

Moment-Generating Function

NPM version Build Status Coverage Status

Triangular distribution moment-generating function (MGF).

The moment-generating function for a triangular random variable is

$$M_X(t) := \mathbb{E}\!\left[e^{tX}\right] = 2\frac{(b\!-\!c)e^{at}\!-\!(b\!-\!a)e^{ct}\!+\!(c\!-\!a)e^{bt}} {(b-a)(c-a)(b-c)t^2}$$

where a is the lower limit, b is the upper limit, and c is the mode of the distribution. The parameters must satisfy b > a and a <= b <= c.

Installation

npm install @stdlib/stats-base-dists-triangular-mgf

Alternatively,

  • To load the package in a website via a script tag without installation and bundlers, use the ES Module available on the esm branch (see README).
  • If you are using Deno, visit the deno branch (see README for usage intructions).
  • For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the umd branch (see README).

The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.

Usage

var mgf = require( '@stdlib/stats-base-dists-triangular-mgf' );

mgf( t, a, b, c )

Evaluates the moment-generating function (MGF) for a triangular distribution with parameters a (lower limit), b (upper limit), and c (mode).

var y = mgf( 0.5, -1.0, 1.0, 0.0 );
// returns ~1.021

y = mgf( 0.5, -1.0, 1.0, 0.5 );
// returns ~1.111

y = mgf( -0.3, -20.0, 0.0, -2.0 );
// returns ~24.334

y = mgf( -2.0, -1.0, 1.0, 0.0 );
// returns ~1.381

If provided NaN as any argument, the function returns NaN.

var y = mgf( NaN, 0.0, 1.0, 0.5 );
// returns NaN

y = mgf( 0.0, NaN, 1.0, 0.5 );
// returns NaN

y = mgf( 0.0, 0.0, NaN, 0.5 );
// returns NaN

y = mgf( 2.0, 1.0, 0.0, NaN );
// returns NaN

If provided parameters not satisfying a <= c <= b, the function returns NaN.

var y = mgf( 2.0, 1.0, 0.0, 1.5 );
// returns NaN

y = mgf( 2.0, 1.0, 0.0, -1.0 );
// returns NaN

y = mgf( 2.0, 0.0, -1.0, 0.5 );
// returns NaN

mgf.factory( a, b, c )

Returns a function for evaluating the moment-generating function of a triangular distribution with parameters a (lower limit), b (upper limit), and c (mode).

var mymgf = mgf.factory( 0.0, 2.0, 1.0 );

var y = mymgf( -1.0 );
// returns ~0.3996

y = mymgf( 2.0 );
// returns ~10.205

Examples

var randu = require( '@stdlib/random-base-randu' );
var mgf = require( '@stdlib/stats-base-dists-triangular-mgf' );

var a;
var b;
var c;
var t;
var v;
var i;

for ( i = 0; i < 10; i++ ) {
    t = randu() * 5.0;
    a = randu() * 10.0;
    b = a + (randu() * 40.0);
    c = a + (( b - a ) * randu());
    v = mgf( t, a, b, c );
    console.log( 't: %d, a: %d, b: %d, c: %d, M_X(t;a,b,c): %d', t.toFixed( 4 ), a.toFixed( 4 ), b.toFixed( 4 ), c.toFixed( 4 ), v.toFixed( 4 ) );
}

C APIs

Usage

#include "stdlib/stats/base/dists/triangular/mgf.h"

stdlib_base_dists_triangular_mgf( t, a, b, c )

Evaluates the moment-generating function (MGF) for a triangular distribution with parameters a (lower limit), b (upper limit), and c (mode).

double y = stdlib_base_dists_triangular_mgf( 0.5, -1.0, 1.0, 0.0 );
// returns ~1.021

The function accepts the following arguments:

  • t: [in] double input value.
  • a: [in] double lower limit.
  • b: [in] double upper limit.
  • c: [in] double mode.
double stdlib_base_dists_triangular_mgf( const double t, const double a, const double b, const double c );

Examples

#include "stdlib/stats/base/dists/triangular/mgf.h"
#include "stdlib/constants/float64/eps.h"
#include <stdlib.h>
#include <stdio.h>

static double random_uniform( const double min, const double max ) {
    double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
    return min + ( v*(max-min) );
}

int main( void ) {
    double a;
    double b;
    double c;
    double t;
    double y;
    int i;

    for ( i = 0; i < 25; i++ ) {
        t = random_uniform( 0.0, 5.0 );
        a = random_uniform( 0.0, 10.0 );
        b = random_uniform( a+STDLIB_CONSTANT_FLOAT64_EPS, 40.0 );
        c = random_uniform( a, b );
        y = stdlib_base_dists_triangular_mgf( t, a, b, c );
        printf( "t: %lf, a: %lf, b: %lf, c: %lf, M_X(t;a,b,c): %lf\n", t, a, b, c, y );
    }
}

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2025. The Stdlib Authors.