This repository has been archived by the owner on Apr 21, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathallcodes.m
executable file
·221 lines (173 loc) · 5.68 KB
/
allcodes.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
I've modified the Neural Networks code to work for any specified layer configuration.
Example: layers = [400 25 25 10]; can be passed to the algorithm and it will do the rest. No need to change code when you have to change your configuration.
Each file starts with the **name in bold.**
**nnStart.m** The file to run
%Read me
%------Files-----------
% fmincg.m
% initWeights.m
% nnCost.m
% nnPredict.m
% nnStart.m
% nnTrain.m
% octave-core.m
% sigmoid.m
% sigmoidGradient.m
%----------------------
%Set configuration, ie: number of nodes in your layers like below
% layers = [no_input_nodes hidden_1 .... hidden_n no_output_nodes];
%Example: layers = [20 10 10 5];
% ie: 20 input nodes for layer 1
% 10 hidden nodes for layer 2
% 10 hidden nodes for layer 3
% 5 output nodes for layer 4
%can also be row vector like [20; 10; 10; 5]
%Explictly set the number of labels/classes
num_labels = 10;
%Set the neural networks layer configuration
layers = [400 25 10]; %As used in Ex4
%Maximum Iteration
maxIter = 10;
%Set lambda for regularization
lambda = 1;
%Using test data given in Ex4
load('ex4data1.mat');
[nn_params cost ERR MSG] = nnTrain(X, y, layers, num_labels, maxIter, lambda);
pred = nnPredict(nn_params, layers, X);
fprintf('\nTraining Set Accuracy: %f %%\n', mean(double(pred == y)) * 100);
**nnTrain.m**
function [nn_params cost ERR MSG] = nnTrain(X, y, layers, num_labels, maxIter, lambda)
%Returns weights for Neural Networks after training
ERR = 1;
layer_count = max(size(layers));
if size(layers, 1) == 1 %Convert column vectors to row vector
layers = layers';
end
%Make sure labels in y start from 1 to num_labels(number of output nodes)
if (min(y) ~= 1) | (max(y) ~= num_labels)
MSG = 'Labels/classes should start from 1 to number of labels/classes';
return;
end
initial_nn_params = [];
for l = 1:layer_count - 1
r = layers(l + 1);
c = layers(l) + 1;
initial_nn_params = [initial_nn_params; initWeights(r, c)(:)];
end
options = optimset('MaxIter', maxIter);
costFunction = @(p) nnCost(p, layers, num_labels, X, y, lambda);
[nn_params, cost] = fmincg(costFunction, initial_nn_params, options);
ERR = 0;
end
**nnCost.m**
function [J grad] = nnCost(nn_params, layers, num_labels, X, y, lambda)
%Returns the Cost and Gradient
J = 0;
grad = [];
m = size(X, 1);
layer_count = size(layers, 1);
%Converts y into matrix Y where Y(i, :) = [0 1 0 ... 0] for each label 2 example
if m < 100000 %Implement this only when there are fewer examples
Y = eye(num_labels)(y, :);
else
Y = zeros(m, num_labels);
for i = 1:m
Y(i, y(i)) = 1;
end
end
%Reshape all theta
Theta = cell(layer_count - 1, 1);
Theta_grad = cell(layer_count-1, 1);
for l = 1:layer_count - 1
r = layers(l + 1);
c = layers(l) + 1;
start_index = layers(2:l)' * (layers(1:l-1) + 1) + 1;
stop_index = start_index + (r * c) - 1;
Theta{l} = reshape(nn_params(start_index:stop_index), r, c);
Theta_grad{l} = zeros(size(Theta{l}));
end
%Compute activation units
H = X;
for l = 1:layer_count - 1
H = [ones(m, 1) H];
H = sigmoid(H * Theta{l}');
end
for l = 1:layer_count - 1
J = J + sum(sum(Theta{l}(:, 2:end) .* Theta{l}(:, 2:end)));
end
J = (-1/m) * (sum(sum((Y .* log(H)) + ((1 - Y) .* (log(1 - H)))))) + (lambda/(2 * m)) * J;
A = cell(layer_count, 1);
Z = cell(layer_count, 1);
D = cell(layer_count, 1);
for t = 1:m
%---------Forward Propagation-----------
for l = 1:layer_count
if l == 1
A{l} = [1; X(t,:)']; %Assign training example to layer 1
elseif l == layer_count
Z{l} = Theta{l-1} * A{l-1};
A{l} = sigmoid(Z{l});
else
Z{l} = Theta{l-1} * A{l-1};
A{l} = [1; sigmoid(Z{l})];
end
end
%---------Backward Propagation----------
for l = fliplr(2:layer_count)
if l == layer_count
D{l} = A{l} - Y(t,:)';
else
D{l} = (Theta{l}' * D{l+1})(2:end) .* sigmoidGradient(Z{l});
% D{l} = (Theta{l}' * D{l+1}) .* [1; sigmoidGradient(Z{l})];
% D{l} = D{l}(2:end);
end
end
%---------Big delta update--------------
for l=1:layer_count - 1
Theta_grad{l} = Theta_grad{l} + D{l+1} * A{l}';
end
end
%------------Update gradients---------------
for l=1:layer_count - 1
Theta_grad{l} = (1/m) * Theta_grad{l} + (lambda/m) * [zeros(size(Theta{l}, 1), 1) Theta{l}(:,2:end)];
end
%------------Unroll gradients---------------
for l=1:layer_count - 1
grad = [grad; Theta_grad{l}(:)];
end
end
**nnPredict.m**
function p = nnPredict(nn_params, layers, X)
m = size(X, 1);
p = zeros(m, 1);
layer_count = max(size(layers));
if size(layers, 1) == 1 %Convert column vectors to row vector
layers = layers';
end
num_labels = layers(layer_count);
%Reshape all theta
Theta = cell(layer_count - 1, 1);
for l = 1:layer_count - 1
r = layers(l + 1);
c = layers(l) + 1;
start_index = layers(2:l)' * (layers(1:l-1) + 1) + 1;
stop_index = start_index + (r * c) - 1;
Theta{l} = reshape(nn_params(start_index:stop_index), r, c);
end
H = X;
for l = 1:layer_count - 1
H = sigmoid([ones(m, 1) H] * Theta{l}');
end
[dummy, p] = max(H, [], 2);
end
**initWeights.m**
function W = initWeights(row_count, col_count)
%Randomly Initialize Weights
epsilon_init = 0.12;
W = rand(row_count, col_count) * 2 * epsilon_init - epsilon_init;
end
**The following can be copied from Ex4**
* fmincg.m
* octave-core.m
* sigmoid.m
* sigmoidGradient.m