-
Notifications
You must be signed in to change notification settings - Fork 1
/
arm2d.py
445 lines (403 loc) · 19.8 KB
/
arm2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import numpy as np
import gym
from gym.envs.classic_control import rendering
from shapely.geometry import Polygon
import time
import ccd_ik
DEBUG = False
class Arm2d(gym.Env):
def __init__(self, has_obstacles=True):
# MEASUREMENTS
self.SCREEN_WIDTH = 600
self.SCREEN_HEIGHT = self.SCREEN_WIDTH
self.NUM_ARMS = 6
self.ARM_LENGTH = (self.SCREEN_HEIGHT/2) / self.NUM_ARMS
self.ARM_WIDTH = self.ARM_LENGTH / 10
self.INTERPOLATE_INC = (1 / 200) * np.pi
self.CIRCLE_RADIUS = 5
self.TARGET_RADIUS = 10
self.RELAX_JOINT_LIMITS = False
self.RELAX_COLLISIONS = False
# CONSTRAINTS
self.MIN_CENTER_TO_TARGET_DISTANCE = (1/8) * self.SCREEN_WIDTH
self.MAX_CENTER_TO_TARGET_DISTANCE = (3/8) * self.SCREEN_WIDTH
self.MIN_END_EFFECTOR_TO_TARGET_DISTANCE = (1/32) * self.SCREEN_WIDTH
self.MAX_END_EFFECTOR_TO_TARGET_DISTANCE = (1/16) * self.SCREEN_WIDTH
self.MAX_LINEAR_DEVIATION = (1/2) * self.SCREEN_WIDTH
self.JOINT_LIMIT = (7 / 8) * np.pi
self.BATCH_SIZE = 1000
self.MAX_JOINT_ROTATION = (1/50) * np.pi
# COLORS
self.BASE_COLOR = (0, 0, 0)
self.END_EFFECTOR_COLOR = (0, 0, 0)
self.TARGET_COLOR = (0, 0.8, 0)
self.ARM_COLORS = [
(255 / 255, 51 / 255, 51 / 255), # red
(255 / 255, 255 / 255, 51 / 255), # yellow
(255 / 255, 51 / 255, 255 / 255), # pink
(0 / 255, 204 / 255, 0 / 255), # green
(0 / 255, 128 / 255, 255 / 255), # purple
(255 / 255, 128 / 255, 0 / 255), # orange
(0 / 255, 0 / 255, 255 / 255), # blue
(0 / 255, 255 / 255, 128 / 255), # teal
]
max_norm = np.linalg.norm(np.ones(self.NUM_ARMS)*self.MAX_JOINT_ROTATION)
# COSTS
self.MOVEMENT_COST = -0.005 / max_norm
self.FLAT_COST = -0.0001
self.JOINT_LIMIT_VIOLATION_COST = -2.0 / max_norm
self.COLLISION_COST = -2.0 / max_norm
self.OVERSHOT_COST = -100.0 / max_norm
self.LINEAR_DEVIATION_COST = -50.0 / self.SCREEN_WIDTH
self.LINEAR_DEVIATION_VIOLATION_COST = -500.0
self.STRICT_COLLISION_COST = -500.0
self.STRICT_JOINT_LIMIT_COST = -500.0
# REWARDS
self.TARGET_PROXIMITY_REWARD = 500.0
self.TARGET_REACHED_REWARD = 500.0
self.has_obstacles = has_obstacles
self.action_space = gym.spaces.Box(-1.0, 1.0, (self.NUM_ARMS,), dtype=np.float32)
self.observation_space = gym.spaces.Box(-1.0, 1.0, shape=(self.NUM_ARMS+4,), dtype=np.float32)
self.viewer = None
self.arm_polygons = None
self.joint_angles = None
self.end_effector_position = None
self.end_effector_position_record = None
self.target_position = None
self.distance_to_target = None
self.linear_deviation = None
self.initial_distance_to_target = None
self.start_position = None
self.ldv_bound_shift = None
self.batch = None
self.batch_index = None
self.batch_rounds = None
def new_batch(self):
self.batch = []
self.batch_index = 0
self.batch_rounds = 0
for i in range(self.BATCH_SIZE):
self.arm_polygons = [None] * self.NUM_ARMS
self.joint_angles = np.zeros(self.NUM_ARMS)
self.end_effector_position = np.zeros(2)
self.target_position = np.ones(2) * 100.0
self._set_random_robot_position()
self._update_arm_pose()
self.start_position = self.end_effector_position
while True:
self.target_position = np.random.rand(2) * self.SCREEN_WIDTH - self.SCREEN_WIDTH/2
distance_from_center = np.linalg.norm(self.target_position)
distance_from_end_effector = np.linalg.norm(self.target_position - self.end_effector_position)
if (
self.MIN_CENTER_TO_TARGET_DISTANCE < distance_from_center < self.MAX_CENTER_TO_TARGET_DISTANCE and
self.MIN_END_EFFECTOR_TO_TARGET_DISTANCE < distance_from_end_effector < self.MAX_END_EFFECTOR_TO_TARGET_DISTANCE and
not self._target_reached()
):
break
self.batch.append({
'start_position': np.copy(self.start_position),
'target_position': np.copy(self.target_position),
'end_effector_position': np.copy(self.end_effector_position),
'joint_angles': np.copy(self.joint_angles)
})
def _update_arm_pose(self):
angle = 0
position = np.zeros(2)
for i in range(self.NUM_ARMS):
points = [None, None, None, None]
angle += self.joint_angles[i]
# this shouldn't happen
assert(2*np.pi > angle > -2*np.pi)
# normalize angle
if angle > np.pi:
angle = -np.pi + (angle - np.pi)
elif angle < -np.pi:
angle = np.pi + (angle + np.pi)
if angle == 0:
points[0] = (position[0] - self.ARM_WIDTH/2, position[1])
points[1] = (position[0] - self.ARM_WIDTH/2, position[1] + self.ARM_LENGTH)
points[2] = (position[0] + self.ARM_WIDTH/2, position[1] + self.ARM_LENGTH)
points[3] = (position[0] + self.ARM_WIDTH/2, position[1])
position[1] += self.ARM_LENGTH
elif angle == np.pi or angle == -np.pi:
points[0] = (position[0] + self.ARM_WIDTH/2, position[1])
points[1] = (position[0] + self.ARM_WIDTH/2, position[1] - self.ARM_LENGTH)
points[2] = (position[0] - self.ARM_WIDTH/2, position[1] - self.ARM_LENGTH)
points[3] = (position[0] - self.ARM_WIDTH/2, position[1])
position[1] -= self.ARM_LENGTH
elif angle == np.pi/2:
points[0] = (position[0], position[1] + self.ARM_WIDTH/2)
points[1] = (position[0] + self.ARM_LENGTH, position[1] + self.ARM_WIDTH/2)
points[2] = (position[0] + self.ARM_LENGTH, position[1] - self.ARM_WIDTH/2)
points[3] = (position[0], position[1] - self.ARM_WIDTH/2)
position[0] += self.ARM_LENGTH
elif angle == -np.pi/2:
points[0] = (position[0], position[1] - self.ARM_WIDTH/2)
points[1] = (position[0] - self.ARM_LENGTH, position[1] - self.ARM_WIDTH/2)
points[2] = (position[0] - self.ARM_LENGTH, position[1] + self.ARM_WIDTH/2)
points[3] = (position[0], position[1] + self.ARM_WIDTH/2)
position[0] -= self.ARM_LENGTH
elif -np.pi < angle < -np.pi/2:
theta = -angle - np.pi/2
x_w = self.ARM_WIDTH/2 * np.sin(theta)
y_w = -self.ARM_WIDTH/2 * np.cos(theta)
x_l = -self.ARM_LENGTH * np.cos(theta)
y_l = -self.ARM_LENGTH * np.sin(theta)
points[0] = (position[0] + x_w, position[1] + y_w)
points[1] = (position[0] + x_w + x_l, position[1] + y_w + y_l)
points[2] = (position[0] - x_w + x_l, position[1] - y_w + y_l)
points[3] = (position[0] - x_w, position[1] - y_w)
position += np.array([x_l, y_l])
elif -np.pi/2 < angle < 0:
theta = -angle
x_w = -self.ARM_WIDTH/2 * np.cos(theta)
y_w = -self.ARM_WIDTH/2 * np.sin(theta)
x_l = -self.ARM_LENGTH * np.sin(theta)
y_l = self.ARM_LENGTH * np.cos(theta)
points[0] = (position[0] + x_w, position[1] + y_w)
points[1] = (position[0] + x_w + x_l, position[1] + y_w + y_l)
points[2] = (position[0] - x_w + x_l, position[1] - y_w + y_l)
points[3] = (position[0] - x_w, position[1] - y_w)
position += np.array([x_l, y_l])
elif 0 < angle < np.pi/2:
theta = angle
x_w = -self.ARM_WIDTH/2 * np.cos(theta)
y_w = self.ARM_WIDTH/2 * np.sin(theta)
x_l = self.ARM_LENGTH * np.sin(theta)
y_l = self.ARM_LENGTH * np.cos(theta)
points[0] = (position[0] + x_w, position[1] + y_w)
points[1] = (position[0] + x_w + x_l, position[1] + y_w + y_l)
points[2] = (position[0] - x_w + x_l, position[1] - y_w + y_l)
points[3] = (position[0] - x_w, position[1] - y_w)
position += np.array([x_l, y_l])
elif np.pi/2 < angle < np.pi:
theta = angle - np.pi/2
x_w = self.ARM_WIDTH/2 * np.sin(theta)
y_w = self.ARM_WIDTH/2 * np.cos(theta)
x_l = self.ARM_LENGTH * np.cos(theta)
y_l = -self.ARM_LENGTH * np.sin(theta)
points[0] = (position[0] + x_w, position[1] + y_w)
points[1] = (position[0] + x_w + x_l, position[1] + y_w + y_l)
points[2] = (position[0] - x_w + x_l, position[1] - y_w + y_l)
points[3] = (position[0] - x_w, position[1] - y_w)
position += np.array([x_l, y_l])
# this shouldn't happen
else:
assert(False)
# neither should this
assert(None not in points)
self.arm_polygons[i] = Polygon(points)
self.end_effector_position = position
def _set_random_robot_position(self):
counter = 0
safe_joint_limit = (4/5) * self.JOINT_LIMIT
while True:
for i in range(self.NUM_ARMS):
self.joint_angles[i] = -safe_joint_limit + np.random.random() * safe_joint_limit * 2
# self.joint_angles[i] = -(self.JOINT_ROT_LIMIT/2) + np.random.random() * self.JOINT_ROT_LIMIT
self._update_arm_pose()
collision = self._check_arm_collisions()
dist_to_end_effector = np.linalg.norm(self.end_effector_position)
if (
not collision
and self.MIN_CENTER_TO_TARGET_DISTANCE < dist_to_end_effector < self.MAX_CENTER_TO_TARGET_DISTANCE
# TODO: remove this
# and self.end_effector_position[0] > 0 and self.end_effector_position[1] > 0
):
break
counter += 1
if DEBUG:
print("_set_random_robot_position took {} attempts".format(counter))
def _check_arm_collisions(self):
collision = False
for i in range(self.NUM_ARMS-2):
for j in range(i+2, self.NUM_ARMS):
if self.arm_polygons[i].intersects(self.arm_polygons[j]):
if DEBUG:
print("collision of ARM_{} and ARM_{}".format(i, j))
collision = True
return collision
def _joint_limit_violated(self):
return np.max(np.abs(self.joint_angles)) > self.JOINT_LIMIT
def _target_reached(self):
return np.max(np.abs(self.end_effector_position - self.target_position)) < self.TARGET_RADIUS
def _get_distance_to_target(self):
return np.linalg.norm(self.end_effector_position - self.target_position)
def _update_distance_to_target(self):
self.distance_to_target = self._get_distance_to_target()
def _get_state(self):
joint_angles = self.joint_angles / self.JOINT_LIMIT
target_position = self.target_position / (self.SCREEN_WIDTH / 2)
start_position = self.start_position / (self.SCREEN_WIDTH / 2)
return np.append(np.append(joint_angles, start_position), target_position)
def _get_distance_from_line(self):
rise = self.target_position[1] - self.start_position[1]
run = self.target_position[0] - self.start_position[0]
# vertical target trajectory
if run == 0:
return np.abs(self.end_effector_position[0] - self.target_position[0])
# horizontal target trajectory
elif rise == 0:
return np.abs(self.end_effector_position[1] - self.target_position[1])
else:
m1 = rise/run
# b = y - mx
b1 = self.target_position[1] - m1 * self.target_position[0]
m2 = -1/m1
# b = y - mx
b2 = self.end_effector_position[1] - m2 * self.end_effector_position[0]
# m1 * x + b1 = m2 * x + b2
# m1 * x - m2 * x = b2 - b1
# (m1 - m2) * x = b2 - b1
x = (b2 - b1) / (m1 - m2)
y = m1 * x + b1
p = np.array([x, y])
return np.linalg.norm(self.end_effector_position - p)
def seed(self, seed):
np.random.seed(seed)
def reset(self):
self.end_effector_position_record = []
self.linear_deviation = 0
if self.batch_index == self.BATCH_SIZE:
self.batch_index = 0
self.batch_rounds += 1
config = self.batch[self.batch_index]
self.start_position = np.copy(config['start_position'])
self.target_position = np.copy(config['target_position'])
self.end_effector_position = np.copy(config['end_effector_position'])
self.joint_angles = np.copy(config['joint_angles'])
self.batch_index += 1
self._update_arm_pose()
self.end_effector_position_record.append(self.start_position)
self._update_distance_to_target()
self.initial_distance_to_target = self._get_distance_to_target()
# calculations for LDV bound rendering
m = (self.target_position[1] - self.end_effector_position[1]) / (self.target_position[0] - self.end_effector_position[0])
m_perp = -1/m
norm = np.linalg.norm([1, m_perp])
scale = self.MAX_LINEAR_DEVIATION / norm
self.ldv_bound_shift = np.array([scale, scale * m_perp])
return self._get_state()
def step(self, action, continuous_render=True):
assert(np.max(np.abs(action)) <= 1)
action = np.array(action) * self.MAX_JOINT_ROTATION
info = {'violations': [], 'target_reached': False, 'linear_deviation_cost': 0, 'movement_cost': 0}
reward = 0
# calculate interpolation steps
max_angle_inc = np.max(np.abs(action))
num_steps = int(np.ceil(max_angle_inc / self.INTERPOLATE_INC))
if num_steps > 0:
joint_inc = action / num_steps
for step in range(num_steps):
self.joint_angles += joint_inc
self._update_arm_pose()
if continuous_render:
self.render()
time.sleep(0.01)
# add cost of linear deviation
ld = self._get_distance_from_line()
if ld > self.MAX_LINEAR_DEVIATION:
info['violations'].append('linear_deviation_violation')
return self._get_state(), self.LINEAR_DEVIATION_VIOLATION_COST, True, info
ldc = self.LINEAR_DEVIATION_COST * (ld - self.linear_deviation)
self.linear_deviation = ld
reward += ldc
info['linear_deviation_cost'] += ldc
if self._check_arm_collisions():
info['violations'].append('arm_self_collision')
if self.RELAX_COLLISIONS:
# reverse collision
self.joint_angles -= joint_inc
self._update_arm_pose()
reward += self.COLLISION_COST * np.linalg.norm(joint_inc * (num_steps - step))
break
else:
reward += self.STRICT_COLLISION_COST
return self._get_state(), reward, True, info
if self._joint_limit_violated():
info['violations'].append('joint_limit_violation')
if self.RELAX_JOINT_LIMITS:
# reverse limit violation
self.joint_angles -= joint_inc
self._update_arm_pose()
reward += self.JOINT_LIMIT_VIOLATION_COST * np.linalg.norm(joint_inc * (num_steps - step))
break
else:
reward += self.STRICT_JOINT_LIMIT_COST
return self._get_state(), reward, True, info
if self._target_reached():
# target reached reward
reward += self.TARGET_REACHED_REWARD
# proximity reward
distance_before = self.distance_to_target
self._update_distance_to_target()
reward += self.TARGET_PROXIMITY_REWARD * (
distance_before - self.distance_to_target) / self.initial_distance_to_target
# overshot cost
oc = self.OVERSHOT_COST * np.linalg.norm(joint_inc * (num_steps - step - 1))
reward += oc
info['overshot_cost'] = oc
info['target_reached'] = True
return self._get_state(), reward, True, info
self.end_effector_position_record.append(self.end_effector_position)
# proximity reward
distance_before = self.distance_to_target
self._update_distance_to_target()
reward += self.TARGET_PROXIMITY_REWARD * (distance_before - self.distance_to_target) / self.initial_distance_to_target
# movement cost
movement_cost = np.linalg.norm(action) * self.MOVEMENT_COST
reward += movement_cost
info['movement_cost'] = movement_cost
# step cost (flat cost)
# reward += self.FLAT_COST
return self._get_state(), reward, False, info
def render(self, mode='human'):
start_position = self.start_position + self.SCREEN_WIDTH/2
target_position = self.target_position + self.SCREEN_WIDTH/2
end_effector_position = self.end_effector_position + self.SCREEN_WIDTH/2
if self.viewer is None:
self.viewer = rendering.Viewer(self.SCREEN_WIDTH, self.SCREEN_HEIGHT)
self.viewer.set_bounds(0, self.SCREEN_WIDTH, 0, self.SCREEN_HEIGHT)
# draw target path
self.viewer.draw_polyline(
(
start_position,
target_position,
),
linewidth=5,
color=(0.7, 0.7, 0.7)
)
# draw linear deviation bounds
for shift in (self.ldv_bound_shift, -self.ldv_bound_shift):
self.viewer.draw_polyline(
(
start_position + shift,
target_position + shift,
),
linewidth=5,
color=(0.7, 0.7, 0.7)
)
# draw trajectory
path = [(self.SCREEN_WIDTH/2 + p[0], self.SCREEN_WIDTH/2 + p[1]) for p in self.end_effector_position_record]
self.viewer.draw_polyline(
path,
linewidth=5,
color=(0, 1, 0)
)
# draw target
t = rendering.Transform(translation=target_position)
self.viewer.draw_circle(self.TARGET_RADIUS, color=self.TARGET_COLOR).add_attr(t)
# draw arm
for i, polygon in enumerate(self.arm_polygons):
x_list, y_list = polygon.exterior.coords.xy
points = [(x+self.SCREEN_WIDTH/2, y+self.SCREEN_HEIGHT/2) for x, y in zip(x_list, y_list)]
self.viewer.draw_polygon(points, color=self.ARM_COLORS[i])
# draw end effector
t = rendering.Transform(translation=end_effector_position)
self.viewer.draw_circle(self.CIRCLE_RADIUS, color=self.END_EFFECTOR_COLOR).add_attr(t)
# draw base
t = rendering.Transform(translation=(self.SCREEN_WIDTH/2, self.SCREEN_HEIGHT/2))
self.viewer.draw_circle(self.CIRCLE_RADIUS, color=self.BASE_COLOR).add_attr(t)
return self.viewer.render(return_rgb_array='rgb_array')
if __name__ == '__main__':
agent = Arm2d()