-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathomp_gpu_trans.py
executable file
·268 lines (240 loc) · 12.4 KB
/
omp_gpu_trans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
#!/usr/bin/env python
# -----------------------------------------------------------------------------
# BSD 3-Clause License
#
# Copyright (c) 2021-2024, Science and Technology Facilities Council.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# -----------------------------------------------------------------------------
# Authors: S. Siso, STFC Daresbury Lab
''' PSyclone transformation script showing the introduction of OpenMP for GPU
directives into Nemo code. '''
from psyclone.psyGen import TransInfo
from psyclone.psyir.nodes import (
Call, Loop, Directive, Assignment, OMPAtomicDirective, Routine,
IntrinsicCall)
from psyclone.psyir.transformations import OMPTargetTrans
from psyclone.transformations import OMPDeclareTargetTrans
from utils import insert_explicit_loop_parallelism, normalise_loops, \
enhance_tree_information, add_profiling
from psyclone.psyir.transformations import OMPTargetTrans, InlineTrans, LoopFuseTrans
from psyclone.domain.common.transformations import KernelModuleInlineTrans
from psyclone.transformations import OMPDeclareTargetTrans, TransformationError
from psyclone.psyir.transformations import Product2LoopTrans
PROFILING_ENABLED = False
def trans(psy):
''' Add OpenMP Target and Loop directives to all loops, including the
implicit ones, to parallelise the code and execute it in an acceleration
device.
:param psy: the PSy object which this script will transform.
:type psy: :py:class:`psyclone.psyGen.PSy`
:returns: the transformed PSy object.
:rtype: :py:class:`psyclone.psyGen.PSy`
'''
omp_target_trans = OMPTargetTrans()
omp_loop_trans = TransInfo().get_trans_name('OMPLoopTrans')
omp_loop_trans.omp_directive = "loop"
routine_sym = None
print(f"Invokes found in {psy.name}:")
print(psy.invokes)
for invoke in psy.invokes.invoke_list:
print(invoke.name)
if PROFILING_ENABLED:
add_profiling(invoke.schedule.children)
# TODO #2317: Has structure accesses that can not be offloaded and has
# a problematic range to loop expansion of (1:1)
if psy.name.startswith("psy_obs_"):
print("Skipping", invoke.name)
continue
# TODO #1841: These files have a bug in the array-range-to-loop
# transformation. One leads to the following compiler error
# NVFORTRAN-S-0083-Vector expression used where scalar expression
# required, the other to an incorrect result.
if invoke.name in ("trc_oce_rgb", ):
print("Skipping", invoke.name)
continue
# This are functions with scalar bodies, we don't want to parallelise
# them, but we could:
# - Inine them
# - Annotate them with 'omp declare target' and allow to call from gpus
if invoke.name in ("q_sat", "sbc_dcy", "gamma_moist", "cd_neutral_10m",
"psi_h", "psi_m"):
print("Skipping", invoke.name)
continue
enhance_tree_information(invoke.schedule)
inline_trans = InlineTrans()
kern_in_trans = KernelModuleInlineTrans()
inlined_syms = []
for call in invoke.schedule.walk(Call):
if(call.routine.name == "exp_v" or call.routine.name == "sqrt_v" or call.routine.name == "rescale_tau_omega"):
try:
kern_in_trans.apply(call)
inlined_syms.append(call.routine)
except Exception as err:
pass
try:
inline_trans.apply(call)
except Exception as err:
if(call.routine.name == "exp_v"):
print("Failed to inline")
print(err)
elif call.routine.name == "rescale_tau_omega":
print("Failed to inline rescale_tau_omega")
print(err)
normalise_loops(
invoke.schedule,
hoist_local_arrays=False,
convert_array_notation=True,
loopify_array_intrinsics=True,
convert_range_loops=True,
hoist_expressions=True
)
# For performance in lib_fortran, mark serial routines as GPU-enabled
if psy.name == "psy_lib_fortran_psy":
if not invoke.schedule.walk(Loop):
calls = invoke.schedule.walk(Call)
if all(call.is_available_on_device() for call in calls):
OMPDeclareTargetTrans().apply(invoke.schedule)
continue
# For now this is a special case for stpctl.f90 because it forces
# loops to parallelise without many safety checks
# TODO #2446: This needs to be generalised and probably be done
# from inside the loop transformation when the race condition data
# dependency is found.
if psy.name == "psy_stpctl_psy":
for loop in invoke.schedule.walk(Loop):
# Skip if an outer loop is already parallelised
if loop.ancestor(Directive):
continue
omp_loop_trans.apply(loop, options={"force": True})
omp_target_trans.apply(loop.parent.parent)
assigns = loop.walk(Assignment)
if len(assigns) == 1 and assigns[0].lhs.symbol.name == "zmax":
stmt = assigns[0]
if OMPAtomicDirective.is_valid_atomic_statement(stmt):
parent = stmt.parent
atomic = OMPAtomicDirective()
atomic.children[0].addchild(stmt.detach())
parent.addchild(atomic)
continue
# Fuse loops
current_index = 0
loops = invoke.schedule.walk(Loop)
if invoke.name not in "solve_band_random_overlap":
fusetrans = LoopFuseTrans()
fuses = 0
while current_index < len(loops)-1:
loop = loops[current_index]
next_loop = loops[current_index+1]
if loop.depth == next_loop.depth:
try:
fusetrans.apply(loop, next_loop)
# If successful
loops = invoke.schedule.walk(Loop)
fuses = fuses + 1
except:
#Unsuccessful
current_index = current_index+1
else:
current_index= current_index + 1
for routine_sym in inlined_syms:
def skip_for_correctness(loop):
for call in loop.walk(Call):
if not isinstance(call, IntrinsicCall):
print(f"Loop not parallelised because it has a call to "
f"{call.routine.name}")
return True
if not call.is_available_on_device():
print(f"Loop not parallelised because it has a "
f"{call.intrinsic.name} not available on GPUs.")
return True
if loop.walk(CodeBlock):
print("Loop not parallelised because it has a CodeBlock")
return True
return False
if routine_sym.is_modulevar:
table = routine_sym.find_symbol_table(call)
for routine in table.node.walk(Routine):
if( routine.name.lower() == "exp_v" or routine.name.lower() == "sqrt_v"):
for loop in routine.walk(Loop):
region_directive_trans=omp_target_trans
loop_directive_trans=omp_loop_trans
# Collapse is necessary to give GPUs enough parallel items
collapse=True
opts = {}
try:
loop_directive_trans.apply(loop, options=opts)
# Only add the region directive if the loop was successfully
# parallelised.
if region_directive_trans:
region_directive_trans.apply(loop.parent.parent)
except TransformationError as err:
# This loop can not be transformed, proceed to next loop
print("Loop not parallelised because:", str(err))
continue
if collapse:
# Count the number of perfectly nested loops that can be collapsed
num_nested_loops = 0
next_loop = loop
previous_variables = []
while isinstance(next_loop, Loop):
previous_variables.append(next_loop.variable)
num_nested_loops += 1
# If it has more than one children, the next loop will not be
# perfectly nested, so stop searching
if len(next_loop.loop_body.children) > 1:
break
next_loop = next_loop.loop_body.children[0]
if not isinstance(next_loop, Loop):
break
# If it is a dependent (e.g. triangular) loop, it can not be
# collapsed
dependent_of_previous_variable = False
for bound in (next_loop.start_expr, next_loop.stop_expr,
next_loop.step_expr):
for ref in bound.walk(Reference):
if ref.symbol in previous_variables:
dependent_of_previous_variable = True
break
if dependent_of_previous_variable:
break
# Check that the next loop has no loop-carried dependencies
if not next_loop.independent_iterations():
break
# Add collapse clause to the parent directive
if num_nested_loops > 1:
loop.parent.parent.collapse = num_nested_loops
insert_explicit_loop_parallelism(
invoke.schedule,
region_directive_trans=omp_target_trans,
loop_directive_trans=omp_loop_trans,
# Collapse is necessary to give GPUs enough parallel items
collapse=True
)
return psy