forked from BlockScience/subspace
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogic.py
684 lines (550 loc) · 22.7 KB
/
logic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
from math import floor, isnan
from typing import Callable
from cadCAD.types import PolicyOutput # type: ignore
from subspace_model.const import *
from subspace_model.metrics import *
from subspace_model.types import *
from subspace_model.units import *
def generic_policy(_1, _2, _3, _4) -> dict:
"""Function to generate pass through policy
Args:
_1
_2
_3
_4
Returns:
dict: Empty dictionary
"""
return {}
def replace_suf(variable: str, default_value=0.0) -> Callable:
"""Creates replacing function for state update from string
Args:
variable (str): The variable name that is updated
Returns:
function: A function that continues the state across a substep
"""
return lambda _1, _2, _3, state, signal: (
variable,
signal.get(variable, default_value),
)
def add_suf(variable: str, default_value=0.0) -> Callable:
"""Creates replacing function for state update from string
Args:
variable (str): The variable name that is updated
Returns:
function: A function that continues the state across a substep
"""
return lambda _1, _2, _3, state, signal: (
variable,
signal.get(variable, default_value) + state[variable],
)
## Time Tracking ##
def p_evolve_time(params: SubspaceModelParams, _2, _3, _4) -> PolicyOutput:
""" """
delta_days = params["timestep_in_days"]
delta_seconds = delta_days * DAY_TO_SECONDS
delta_blocks = delta_seconds / params["block_time_in_seconds"]
return {
"delta_days": delta_days,
"days_passed": delta_days,
"delta_blocks": delta_blocks,
"blocks_passed": delta_blocks,
}
## Farmer Rewards ##
def p_reward(
params: SubspaceModelParams, _2, _3, state: SubspaceModelState
) -> PolicyOutput:
"""
Farmer rewards that originates from protocol issuance.
XXX: there's a hard cap on how much can be issued.
"""
# Extract necessary values from the state
S_r = state["reference_subsidy"]
F_bar = params["max_block_size"] * \
state["storage_fee_in_credits_per_bytes"]
g = state["block_utilization"]
utilization_based_reward = (S_r - min(S_r, F_bar) * g) * BLOCKS_PER_DAY
voting_rewards = S_r * BLOCKS_PER_DAY
total_reward = utilization_based_reward + voting_rewards
if state['reward_issuance_balance'] > total_reward:
reward = total_reward
per_recipient_reward = voting_rewards * (1 / params['reward_recipients'])
reward_to_proposer = utilization_based_reward + voting_rewards * (1 / params['reward_recipients'])
reward_to_voters = reward - reward_to_proposer
else:
reward = 0.0
per_recipient_reward = 0.0
reward_to_proposer = 0.0
reward_to_voters = 0.0
return {"block_reward": reward,
"reward_issuance_balance": -reward,
'farmers_balance': reward,
"reward_to_voters": reward_to_voters,
"reward_to_proposer": reward_to_proposer,
'per_recipient_reward': per_recipient_reward}
# Operator Rewards
# Environmental processes
def s_average_priority_fee(
params: SubspaceModelParams, _2, _3, state: SubspaceModelState, _5
) -> tuple[str, object]:
"""
Simulate the ts-average priority fee during an timestep through
a Gaussian process.
XXX: depends on an stochastic process assumption.
"""
value = max(params["priority_fee_function"](params, state), 0,)
return ("average_priority_fee", value)
def s_average_compute_weight_per_tx(
params: SubspaceModelParams, _2, _3, state: SubspaceModelState, _5
) -> tuple[str, object]:
"""
Simulate the ts-average compute weights per transaction through a Gaussian process.
XXX: depends on an stochastic process assumption.
"""
return (
"average_compute_weight_per_tx",
max(
params["compute_weights_per_tx_function"](params, state),
params["min_compute_weights_per_tx"],
),
)
def s_average_compute_weight_per_bundle(
params: SubspaceModelParams, _2, _3, state: SubspaceModelState, _5
) -> tuple[str, object]:
"""
Simulate the ts-average compute weights per transaction through a Gaussian process.
XXX: depends on an stochastic process assumption.
"""
return (
"average_compute_weight_per_budle",
max(
params["compute_weight_per_bundle_function"](
params,
state,
),
params["min_compute_weights_per_bundle"],
),
)
def s_bundle_count(
params: SubspaceModelParams, _2, _3, state: SubspaceModelState, _5
) -> tuple[str, object]:
"""
Simulate the bs-average transaction size through a Poisson process.
XXX: depends on an stochastic process assumption.
"""
bundle_count = max(
params["bundle_count_per_day_function"](
params,
state,
),
0,
)
return ("bundle_count", bundle_count)
def p_block_utilization(
params: SubspaceModelParams, _2, _3, state: SubspaceModelState
) -> PolicyOutput:
block_utilization = params["utilization_ratio_function"](params, state)
max_normal_block_length: float = (
params["max_block_size"] * DAY_TO_SECONDS *
params["block_time_in_seconds"]
)
transaction_volume = block_utilization * max_normal_block_length * BLOCKS_PER_DAY
average_transaction_size = state["average_transaction_size"]
transaction_count = transaction_volume / average_transaction_size
return {
"block_utilization": block_utilization,
"transaction_count": transaction_count,
"average_transaction_size": average_transaction_size,
}
def p_archive(
params: SubspaceModelParams, _2, _3, state: SubspaceModelState
) -> PolicyOutput:
"""
XXX: check if underlying assumptions / terminology are valid.
XXX: revisit assumption on the supply & demand matching.
FIXME: homogenize terminology
"""
# The header volume. The bytes stored in the chain for each transaction header.
header_volume: Bytes = state["delta_blocks"] * params["header_size"]
# Transaction volume in bytes. This is the driver of blockchain history storage growth.
tx_volume: Bytes = state["transaction_count"] * \
state["average_transaction_size"]
# New buffer bytes are transaction volume plus header
new_buffer_bytes: Bytes = tx_volume + header_volume
# The new size of the buffer
current_buffer: Bytes = new_buffer_bytes + state["buffer_size"]
# Number of segments needed for the current buffer
segments_being_archived: int = int(
floor(current_buffer / params["archival_buffer_segment_size"])
)
# Remove the segments from the buffer and place them in the history
new_history_bytes: Bytes = 0
if segments_being_archived > 0:
delta_buffer = SEGMENT_SIZE * segments_being_archived
new_buffer_bytes += -1 * delta_buffer
new_history_bytes += delta_buffer
# Update the blockchain history size and the current buffer size
return {
"blockchain_history_size": new_history_bytes,
"buffer_size": new_buffer_bytes,
}
def p_pledge_sectors(
params: SubspaceModelParams, _2, _3, state: SubspaceModelState
) -> PolicyOutput:
"""
Decide amount of pledged bytes to be added.
XXX: depends on an stochastic process assumption.
XXX: emits a minimum required space to keep up with the blockchain history size.
"""
# Size of history in bytes
blockchain_history_size: Bytes = state["blockchain_history_size"]
# Minimum replication factor
min_replication_factor: float = params["min_replication_factor"]
# Previous total_space_pledged
total_space_pledged: Bytes = state["total_space_pledged"]
# Required total space to be pledged
required_space_pledged: Bytes = blockchain_history_size * min_replication_factor
# Required new space to be pledged
new_pledge_due_to_requirements: Bytes = max(
required_space_pledged - total_space_pledged, 0
)
# New pledge random parameter function
new_pledge_due_to_random: Bytes = (
int(
max(
params["newly_pledged_space_per_day_function"](params, state),
0,
)
)
)
# Add the random process amount to the minimum amount.
# Take at least the minimum.
new_space_pledged = max(
new_pledge_due_to_requirements + new_pledge_due_to_random,
new_pledge_due_to_requirements,
)
# Update the total space pledged.
return {"total_space_pledged": new_space_pledged}
# Compute & Operator Fees
def p_storage_fees(
params: SubspaceModelParams, _2, _3, state: SubspaceModelState
) -> PolicyOutput:
"""
Calculate storage fees.
If farmers balance is insufficient, then the amount of paid fees
will be lower even though the transactions still go through.
References:
- https://github.com/subspace/subspace/blob/53dca169379e65b4fb97b5c7753f5d00bded2ef2/crates/pallet-transaction-fees/src/lib.rs#L271
"""
# Input
total_credit_supply: Credits = params["credit_supply_definition"](state)
total_space_pledged: Bytes = state["total_space_pledged"]
blockchain_history_size: Bytes = state["blockchain_history_size"]
min_replication_factor: float = params["min_replication_factor"]
# Add bundle storage
average_bundle_size: Bytes = max(
params["bundle_size_function"](
params, state), params["min_bundle_size"]
)
bundle_storage: Bytes = average_bundle_size * state["bundle_count"]
# if total_space_pledged <= blockchain_history_size * min_replication_factor:
# print(f"{total_space_pledged=}")
# print(f"{blockchain_history_size=}")
# print(f"{min_replication_factor=}")
# raise ValueError(
# "total_space_pledged <= blockchain_history_size * min_replication_factor"
# )
free_space: Bytes = max(
(total_space_pledged / min_replication_factor) - blockchain_history_size, 1
)
storage_fee_in_credits_per_bytes = (
total_credit_supply / free_space
) # Credits / Bytes
extrinsic_length_in_bytes: Bytes = (
state["transaction_count"] * state["average_transaction_size"]
)
# storage_fee(tx) as per spec
storage_fee_volume: Credits = (
storage_fee_in_credits_per_bytes * extrinsic_length_in_bytes
)
return {
# Fee Calculation
"free_space": free_space,
"storage_fee_in_credits_per_bytes": storage_fee_in_credits_per_bytes,
"extrinsic_length_in_bytes": extrinsic_length_in_bytes,
"storage_fee_volume": storage_fee_volume,
}
def p_compute_fees(
params: SubspaceModelParams, _2, _3, state: SubspaceModelState
) -> PolicyOutput:
"""
Calculate compute fees.
If farmers balance is insufficient, then the amount of paid fees
will be lower even though the transactions still go through.
Reference: https://subspacelabs.notion.site/Fees-Rewards-Specification-WIP-1b835c7684a940f188920802ca6791f2#4d2c4f4b69a94fcca49a7fcaca7563cc
"""
weight_to_fee: Credits = params["weight_to_fee"]
max_normal_weight: Picoseconds = 0.75 * BLOCK_WEIGHT_FOR_2_SEC
max_bundle_weight = state["max_bundle_weight"] # TODO: type
target_block_fullness = state["target_block_fullness"] # TODO: type
block_weight_utilization = state["block_utilization"] # TODO: type
adjustment_variable = state["adjustment_variable"] # TODO: type
priority_fee_volume = state["average_priority_fee"] # TODO: type
target_block_delta = target_block_fullness - \
block_weight_utilization # TODO: type
targeted_adjustment_parameter = ( # TODO: type
1
+ adjustment_variable * target_block_delta
+ adjustment_variable**2 * target_block_delta**2 / 2
)
prev_compute_fee_multiplier = state["compute_fee_multiplier"] # TODO: type
compute_fee_multiplier = (
targeted_adjustment_parameter * prev_compute_fee_multiplier
) # TODO: type
# Caculate compute weight
tx_compute_weight: ComputeWeights = (
state["average_compute_weight_per_tx"] * state["transaction_count"]
)
bundles_compute_weight: ComputeWeights = (
state["average_compute_weight_per_bundle"] * state["bundle_count"]
)
total_compute_weights: ComputeWeights = tx_compute_weight + bundles_compute_weight
eff_minimum_fee: Credits = 1 * SHANNON_IN_CREDITS
# Calculate compute fee volume
raw_fee = (compute_fee_multiplier * weight_to_fee * total_compute_weights
+ priority_fee_volume)
compute_fee_volume: Credits = max(raw_fee, eff_minimum_fee, )
fees_to_distribute: Credits = compute_fee_volume
# Bundle relevant fees go to operators rather than farmers
bundle_share_of_weight = bundles_compute_weight / \
max(total_compute_weights, 1*SHANNON_IN_CREDITS)
# Fee volume to be from bundles
fees_from_bundles: Credits = fees_to_distribute * bundle_share_of_weight
# Fee volume for farmers
fees_to_farmers: Credits = fees_to_distribute - fees_from_bundles
# # Calculate the fees to operators
fees_to_operators: Credits = fees_from_bundles
# Calculate total fees
total_fees: Credits = fees_to_farmers + fees_to_operators
# HACK: assume that the compute fee are paid jointly by farmers and operators
combined_balance = state['farmers_balance'] + state['operators_balance']
compute_fee_from_farmers = compute_fee_volume * state['farmers_balance'] / combined_balance
compute_fee_from_operators = compute_fee_volume * state['operators_balance'] / combined_balance
# Hack: To unsure operators and farmers balance does not go negative, assume all compute fees that go to farmers are paid by the farmers themselves, and all the compute fees that go to operators are paid by the operators.
fees_to_farmers = compute_fee_from_farmers
fees_to_operators = compute_fee_from_operators
return {
# Compute fee calculations
"target_block_delta": target_block_delta,
"targeted_adjustment_parameter": targeted_adjustment_parameter,
"compute_fee_multiplier": compute_fee_multiplier,
"tx_compute_weight": tx_compute_weight,
"compute_fee_volume": compute_fee_volume,
"priority_fee_volume": priority_fee_volume,
# Taking and distributing fees
"farmers_balance": fees_to_farmers - compute_fee_from_farmers,
"operators_balance": fees_to_operators - compute_fee_from_operators,
"fees_to_operators": fees_to_operators,
}
def p_slash(
params: SubspaceModelParams, _2, _3, state: SubspaceModelState
) -> PolicyOutput:
"""
XXX: depends on an stochastic process assumption.
"""
slash_value = 0.0
slash_to_farmers = 0.0
operator_shares_to_subtract = 0.0
slash_to_burn = 0.0
# XXX: no slash occurs if the pool balance is zero.
pool_balance = state["staking_pool_balance"]
if pool_balance > 0:
slash_count = params["slash_per_day_function"](
params,
state,
)
slash_value = min(
slash_count * params["slash_function"](params, state), pool_balance
)
if slash_value > 0:
slash_to_farmers = slash_value * params["slash_to_farmers"]
slash_to_burn = slash_value - slash_to_farmers
# XXX: we assume that the slash is aplied on the staking pool
# and that its effect is to reduce the operator shares
# by using an invariant product as a assumption.
pool_balance_after = pool_balance - slash_value
total_shares = (
state["operator_pool_shares"] + state["nominator_pool_shares"]
)
operator_shares_to_subtract = total_shares * (
pool_balance_after / pool_balance - 1.0
)
else:
slash_value = 0.0
return {
"staking_pool_balance": -slash_value,
"farmers_balance": slash_to_farmers,
"operator_pool_shares": operator_shares_to_subtract,
"burnt_balance": slash_to_burn,
}
def p_unvest(
params: SubspaceModelParams, _2, _3, state: SubspaceModelState
) -> PolicyOutput:
"""
Impl notes: 30% of total.
22% to be unvested with 24mo and 8% to be unvested with 48mo.
25% total to be unlocked after 12mo and linearly afterwards.
"""
start_period_fraction = 0.25 * float(state['days_passed'] >= 365)
linear_period_fraction = 0.75 * min(max((state['days_passed'] - 365), 0) / 3, 1.0)
investors = 0.2153 * MAX_CREDIT_ISSUANCE * (start_period_fraction + linear_period_fraction)
founders = 0.02 * MAX_CREDIT_ISSUANCE * (start_period_fraction + linear_period_fraction)
team = 0.05 * MAX_CREDIT_ISSUANCE * (start_period_fraction + linear_period_fraction)
advisors = 0.015 * MAX_CREDIT_ISSUANCE * (start_period_fraction + linear_period_fraction)
vendors = 0.02 * MAX_CREDIT_ISSUANCE * (start_period_fraction + linear_period_fraction)
ambassadors = 0.01 * MAX_CREDIT_ISSUANCE * (start_period_fraction + linear_period_fraction)
# Liquid at Launch
testnets = state["allocated_tokens_testnets"]
foundation = state["allocated_tokens_foundation"]
subspace_labs = state["allocated_tokens_subspace_labs"]
ssl_priv_sale = state["allocated_tokens_ssl_priv_sale"]
allocated_tokens_new = (investors + founders + team + advisors + vendors + ambassadors + testnets + foundation + subspace_labs + ssl_priv_sale)
tokens_to_allocate = allocated_tokens_new - state['allocated_tokens']
farmers_balance = tokens_to_allocate
other_issuance_balance = -1.0 * farmers_balance
return {
"other_issuance_balance": other_issuance_balance,
"farmers_balance": farmers_balance,
"allocated_tokens": allocated_tokens_new,
"allocated_tokens_investors": investors,
"allocated_tokens_founders": founders,
"allocated_tokens_team": team,
"allocated_tokens_advisors": advisors,
"allocated_tokens_vendors": vendors,
"allocated_tokens_ambassadors": ambassadors,
}
# User Behavioral Processes
def p_staking(
params: SubspaceModelParams, _2, _3, state: SubspaceModelState
) -> PolicyOutput:
"""
XXX: this assumes that operators and nominators will always
stake a given % of their free balance every timestep.
XXX: assumes an invariant product
XXX: No minimum staking amounts enforced
"""
total_shares = state['operator_pool_shares'] + state['nominator_pool_shares']
if total_shares > 1e-4:
invariant = state["staking_pool_balance"] / total_shares
# invariant = 1
elif total_shares >= 0:
invariant = 1.0
else:
invariant = float('nan')
# Stake operation
operator_stake_fraction = params["operator_stake_per_ts_function"](
params,
state,
)
if operator_stake_fraction > 0:
operator_stake = state["operators_balance"] * operator_stake_fraction
elif invariant > 0:
operator_stake = (
state["operator_pool_shares"] * operator_stake_fraction * invariant
)
else:
operator_stake = 0.0
nominator_stake_fraction = params["nominator_stake_per_ts_function"](
params,
state,
)
if nominator_stake_fraction > 0:
nominator_stake = state["nominators_balance"] * \
nominator_stake_fraction
elif invariant > 0:
nominator_stake = (
state["nominator_pool_shares"] *
nominator_stake_fraction * invariant
)
else:
nominator_stake = 0.0
total_stake = operator_stake + nominator_stake
# NOTE: for handling withdraws bigger than the pool itself.
if -total_stake > state["staking_pool_balance"]:
old_total_stake = total_stake
total_stake = -state["staking_pool_balance"]
scale = total_stake / old_total_stake
operator_stake *= scale
nominator_stake *= scale
return {
"operators_balance": -operator_stake,
"operator_pool_shares": operator_stake / invariant,
"nominator_pool_shares": nominator_stake / invariant,
"nominators_balance": -nominator_stake,
"staking_pool_balance": total_stake,
}
def p_transfers(
params: SubspaceModelParams, _2, _3, state: SubspaceModelState
) -> PolicyOutput:
"""
XXX: stakeholders will always transfer a give % of their balance every ts
"""
delta_nominators = 0.0
delta_farmers = 0.0
delta_operators = 0.0
# Operators to Farmers
if state["operators_balance"] > 0:
delta = state["operators_balance"] * params[
"transfer_operator_to_farmer_per_day_function"
](params, state)
delta_operators -= delta
delta_farmers += delta
# Farmers to Nominators
if state["farmers_balance"] > 0:
delta = state["farmers_balance"] * params[
"transfer_farmer_to_nominator_per_day_function"
](params, state)
delta_farmers -= delta
delta_nominators += delta
# Farmers to Operators
delta = state["farmers_balance"] * params[
"transfer_farmer_to_operator_per_day_function"
](params, state)
delta_farmers -= delta
delta_operators += delta
return {
"operators_balance": delta_operators,
"nominators_balance": delta_nominators,
"farmers_balance": delta_farmers,
}
def s_reference_subsidy(
params: SubspaceModelParams, _2, state_history: list, state: SubspaceModelState, _5) -> tuple:
""" """
current_reference_subsidy = 0.0
for component in params['reference_subsidy_components']:
current_reference_subsidy += component(state['blocks_passed'])
if state['timestep'] > 1:
avg_ref_subsidy = (current_reference_subsidy + state['reference_subsidy']) / 2
else:
avg_ref_subsidy = current_reference_subsidy
return ("reference_subsidy", avg_ref_subsidy)
def s_cumm_generic(source_col, target_col, nan_value=0.0):
# -> tuple[Any, Any]:
def suf(_1, _2, history: list[list[SubspaceModelState]], state: SubspaceModelState, _5):
value = 0.0
for h in history:
past_value = h[-1][source_col] # type: ignore
if isnan(past_value):
past_value = nan_value
value += past_value
value += state[source_col] # XXX: check if there's no double counting
return (target_col, value)
return suf
# -> tuple[Any, Any]:
def s_cumm_compute_fee_to_farmers(p: SubspaceModelParams, _2, history: list[list[SubspaceModelState]], state: SubspaceModelState, _5):
value = 0.0
for h in history:
value += h[-1]['compute_fee_volume']
value += state['compute_fee_volume']
value *= p['compute_fees_to_farmers']
return ("cumm_compute_fees_to_farmers", value)