forked from BlockScience/subspace
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkpis.py
98 lines (75 loc) · 4.39 KB
/
kpis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from subspace_model.psuu.types import *
from subspace_model.types import *
from math import sqrt
## KPIs
def per_timestep_average_relative_community_owned_supply(df: TrajectoryDataFrame) -> KPI:
return (df.community_owned_supply / (df.allocated_tokens + df.issued_supply)).mean()
def mean_farmer_subsidy_factor(df: TrajectoryDataFrame) -> KPI:
"""
Farmer Subsidy Factor = Cummulative Rewards / Cummulative Farmer Revenue
Where Revenue = Cummulative Farmer Inflows (Rewards + Storage Fees + Compute Fees)
"""
farmer_revenue = (df.cumm_rewards + df.cumm_storage_fees_to_farmers + df.cumm_compute_fees_to_farmers)
farmer_subsidy_factor = df.cumm_rewards / farmer_revenue
return farmer_subsidy_factor.mean()
def mean_proposing_rewards_per_newly_pledged_space(df: TrajectoryDataFrame) -> KPI:
"""
M(t) = Rewards to Proposers(t) / New Pledged Space(t)
"""
return (df['reward_to_voters'] / df['total_space_pledged'].diff()).mean()
def mean_proposer_reward_minus_voter_reward(df: TrajectoryDataFrame) -> KPI:
return (df['reward_to_proposer'] - df['per_recipient_reward']).mean()
def cumm_rewards_before_1yr(df: TrajectoryDataFrame) -> KPI:
return df.query("days_passed < 366").block_reward.sum()
def abs_sum_storage_fees_per_sum_compute_fees(df: TrajectoryDataFrame) -> KPI:
"""
M(t) = Storage Fee Volume(t) / Compute Fee Volume(t)
"""
return sqrt(abs(df.storage_fee_volume.sum() ** 2 - df.compute_fee_volume.sum() ** 2))
def cumm_rewards(df: TrajectoryDataFrame) -> KPI:
return df.block_reward.sum()
## PSuU KPI Dict
KPI_functions: dict[str, TrajectoryKPIandThreshold] = {
'mean_relative_community_owned_supply': TrajectoryKPIandThreshold(per_timestep_average_relative_community_owned_supply, "larger_than_median"),
'mean_farmer_subsidy_factor': TrajectoryKPIandThreshold(mean_farmer_subsidy_factor, "smaller_than_median"),
'mean_proposing_rewards_per_newly_pledged_space': TrajectoryKPIandThreshold(mean_proposing_rewards_per_newly_pledged_space, "larger_than_median"),
'mean_proposer_reward_minus_voter_reward': TrajectoryKPIandThreshold(mean_proposer_reward_minus_voter_reward, "larger_than_median"),
'cumm_rewards_before_1yr': TrajectoryKPIandThreshold(cumm_rewards_before_1yr, "larger_than_median"),
'abs_sum_storage_fees_per_sum_compute_fees': TrajectoryKPIandThreshold(abs_sum_storage_fees_per_sum_compute_fees, "smaller_than_median"),
'cumm_rewards': TrajectoryKPIandThreshold(cumm_rewards, "smaller_than_median")
}
GOAL_KPI_GROUPS = {
'G1_rational_economic_incentives': ['mean_proposing_rewards_per_newly_pledged_space', 'mean_proposer_reward_minus_voter_reward'],
'G2_community_incentives': ['mean_relative_community_owned_supply', 'cumm_rewards_before_1yr'],
'G3_supply_demand_equilibrium': ['mean_farmer_subsidy_factor', 'abs_sum_storage_fees_per_sum_compute_fees', 'cumm_rewards'],
'Combined': list(KPI_functions.keys())
}
def check_median_across_trajectories(df: pd.DataFrame,
column_name: str,
direction: str) -> pd.Series:
# Extract the specified column's values
column_values = df[column_name]
# Calculate the median of the specified column
median_column_values = column_values.median()
# Determine direction of comparison
if direction == 'larger_than_median':
return column_values > median_column_values
elif direction == 'smaller_than_median':
return column_values < median_column_values
else:
raise ValueError("The 'direction' parameter must be either 'larger_than_median' or 'smaller_than_median'.")
def calculate_goal_score(grouped_df: pd.DataFrame,
goal: str,
new_column_name: str) -> pd.DataFrame:
scores_df = grouped_df.copy()
scores_df[new_column_name] = 0.0
kpis = GOAL_KPI_GROUPS.get(goal)
for kpi in kpis:
column_name = kpi
(_, direction) = KPI_functions.get(kpi)
# For each metric, add a new column to scores_df to store individual column scores
scores_df[f'label_{column_name}'] = check_median_across_trajectories(grouped_df,
column_name,
direction).astype(int)
scores_df[new_column_name] += scores_df[f'label_{column_name}'].astype(float)
return scores_df