-
Notifications
You must be signed in to change notification settings - Fork 40
/
train_and_run_experiments_bc.py
31 lines (22 loc) · 1.11 KB
/
train_and_run_experiments_bc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import argparse
parser = argparse.ArgumentParser(description='Run experiments on a dataset')
parser.add_argument('--dataset', type=str, required=True)
parser.add_argument("--data_dir", type=str, required=True)
parser.add_argument("--output_dir", type=str)
parser.add_argument('--encoder', type=str, choices=['cnn', 'lstm', 'average', 'all'], required=True)
parser.add_argument('--attention', type=str, choices=['tanh', 'dot', 'all'], required=True)
args, extras = parser.parse_known_args()
args.extras = extras
from Transparency.Trainers.DatasetBC import *
from Transparency.ExperimentsBC import *
dataset = datasets[args.dataset](args)
if args.output_dir is not None :
dataset.output_dir = args.output_dir
encoders = ['cnn', 'lstm', 'average'] if args.encoder == 'all' else [args.encoder]
if args.attention in ['tanh', 'all'] :
train_dataset_on_encoders(dataset, encoders)
# generate_graphs_on_encoders(dataset, encoders)
if args.attention in ['dot', 'all'] :
encoders = [e + '_dot' for e in encoders]
train_dataset_on_encoders(dataset, encoders)
# generate_graphs_on_encoders(dataset, encoders)