forked from kairess/tensorflow-yolov4-tflite
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate.py
143 lines (127 loc) · 6.49 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
from absl import app, flags, logging
from absl.flags import FLAGS
import cv2
import os
import shutil
import numpy as np
import tensorflow as tf
from core.yolov4 import filter_boxes
from tensorflow.python.saved_model import tag_constants
import core.utils as utils
from core.config import cfg
flags.DEFINE_string('weights', './checkpoints/yolov4-416',
'path to weights file')
flags.DEFINE_string('framework', 'tf', 'select model type in (tf, tflite, trt)'
'path to weights file')
flags.DEFINE_string('model', 'yolov4', 'yolov3 or yolov4')
flags.DEFINE_boolean('tiny', False, 'yolov3 or yolov3-tiny')
flags.DEFINE_integer('size', 416, 'resize images to')
flags.DEFINE_string('annotation_path', "./data/dataset/val2017.txt", 'annotation path')
flags.DEFINE_string('write_image_path', "./data/detection/", 'write image path')
flags.DEFINE_float('iou', 0.5, 'iou threshold')
flags.DEFINE_float('score', 0.25, 'score threshold')
def main(_argv):
INPUT_SIZE = FLAGS.size
STRIDES, ANCHORS, NUM_CLASS, XYSCALE = utils.load_config(FLAGS)
CLASSES = utils.read_class_names(cfg.YOLO.CLASSES)
predicted_dir_path = './mAP/predicted'
ground_truth_dir_path = './mAP/ground-truth'
if os.path.exists(predicted_dir_path): shutil.rmtree(predicted_dir_path)
if os.path.exists(ground_truth_dir_path): shutil.rmtree(ground_truth_dir_path)
if os.path.exists(cfg.TEST.DECTECTED_IMAGE_PATH): shutil.rmtree(cfg.TEST.DECTECTED_IMAGE_PATH)
os.mkdir(predicted_dir_path)
os.mkdir(ground_truth_dir_path)
os.mkdir(cfg.TEST.DECTECTED_IMAGE_PATH)
# Build Model
if FLAGS.framework == 'tflite':
interpreter = tf.lite.Interpreter(model_path=FLAGS.weights)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
print(input_details)
print(output_details)
else:
saved_model_loaded = tf.saved_model.load(FLAGS.weights, tags=[tag_constants.SERVING])
infer = saved_model_loaded.signatures['serving_default']
num_lines = sum(1 for line in open(FLAGS.annotation_path))
with open(cfg.TEST.ANNOT_PATH, 'r') as annotation_file:
for num, line in enumerate(annotation_file):
annotation = line.strip().split()
image_path = annotation[0]
image_name = image_path.split('/')[-1]
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
bbox_data_gt = np.array([list(map(int, box.split(','))) for box in annotation[1:]])
if len(bbox_data_gt) == 0:
bboxes_gt = []
classes_gt = []
else:
bboxes_gt, classes_gt = bbox_data_gt[:, :4], bbox_data_gt[:, 4]
ground_truth_path = os.path.join(ground_truth_dir_path, str(num) + '.txt')
print('=> ground truth of %s:' % image_name)
num_bbox_gt = len(bboxes_gt)
with open(ground_truth_path, 'w') as f:
for i in range(num_bbox_gt):
class_name = CLASSES[classes_gt[i]]
xmin, ymin, xmax, ymax = list(map(str, bboxes_gt[i]))
bbox_mess = ' '.join([class_name, xmin, ymin, xmax, ymax]) + '\n'
f.write(bbox_mess)
print('\t' + str(bbox_mess).strip())
print('=> predict result of %s:' % image_name)
predict_result_path = os.path.join(predicted_dir_path, str(num) + '.txt')
# Predict Process
image_size = image.shape[:2]
# image_data = utils.image_preprocess(np.copy(image), [INPUT_SIZE, INPUT_SIZE])
image_data = cv2.resize(np.copy(image), (INPUT_SIZE, INPUT_SIZE))
image_data = image_data / 255.
image_data = image_data[np.newaxis, ...].astype(np.float32)
if FLAGS.framework == 'tflite':
interpreter.set_tensor(input_details[0]['index'], image_data)
interpreter.invoke()
pred = [interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details))]
if FLAGS.model == 'yolov4' and FLAGS.tiny == True:
boxes, pred_conf = filter_boxes(pred[1], pred[0], score_threshold=0.25)
else:
boxes, pred_conf = filter_boxes(pred[0], pred[1], score_threshold=0.25)
else:
batch_data = tf.constant(image_data)
pred_bbox = infer(batch_data)
for key, value in pred_bbox.items():
boxes = value[:, :, 0:4]
pred_conf = value[:, :, 4:]
boxes, scores, classes, valid_detections = tf.image.combined_non_max_suppression(
boxes=tf.reshape(boxes, (tf.shape(boxes)[0], -1, 1, 4)),
scores=tf.reshape(
pred_conf, (tf.shape(pred_conf)[0], -1, tf.shape(pred_conf)[-1])),
max_output_size_per_class=50,
max_total_size=50,
iou_threshold=FLAGS.iou,
score_threshold=FLAGS.score
)
boxes, scores, classes, valid_detections = [boxes.numpy(), scores.numpy(), classes.numpy(), valid_detections.numpy()]
# if cfg.TEST.DECTECTED_IMAGE_PATH is not None:
# image_result = utils.draw_bbox(np.copy(image), [boxes, scores, classes, valid_detections])
# cv2.imwrite(cfg.TEST.DECTECTED_IMAGE_PATH + image_name, image_result)
with open(predict_result_path, 'w') as f:
image_h, image_w, _ = image.shape
for i in range(valid_detections[0]):
if int(classes[0][i]) < 0 or int(classes[0][i]) > NUM_CLASS: continue
coor = boxes[0][i]
coor[0] = int(coor[0] * image_h)
coor[2] = int(coor[2] * image_h)
coor[1] = int(coor[1] * image_w)
coor[3] = int(coor[3] * image_w)
score = scores[0][i]
class_ind = int(classes[0][i])
class_name = CLASSES[class_ind]
score = '%.4f' % score
ymin, xmin, ymax, xmax = list(map(str, coor))
bbox_mess = ' '.join([class_name, score, xmin, ymin, xmax, ymax]) + '\n'
f.write(bbox_mess)
print('\t' + str(bbox_mess).strip())
print(num, num_lines)
if __name__ == '__main__':
try:
app.run(main)
except SystemExit:
pass