forked from panda-lab/face-landmark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_landmark.cpp
142 lines (111 loc) · 4.55 KB
/
face_landmark.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#include <caffe/caffe.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <algorithm>
#include <iosfwd>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "dlib/image_processing/frontal_face_detector.h"
#include "dlib/image_io.h"
#include <time.h>
using namespace caffe;
using namespace std;
using namespace cv;
using namespace dlib;
int main()
{
string network = "/Users/CaffeMac/CaffeMac/Models/landmark_deploy.prototxt";
string weights = "/Users/CaffeMac/CaffeMac/Models/landmark.caffemodel";
string img = "/Users/CaffeMac/CaffeMac/test.jpg";
Net<float> *net = new Net<float>(network,TEST);
net->CopyTrainedLayersFrom(weights);
Caffe::set_mode(Caffe::CPU);
Mat image = imread(img);
frontal_face_detector detector = get_frontal_face_detector();
array2d< bgr_pixel> arrimg(image.rows, image.cols);
for(int i=0; i < image.rows; i++)
{
for(int j=0; j < image.cols; j++)
{
arrimg[i][j].blue = image.at< cv::Vec3b>(i,j)[0];
arrimg[i][j].green=image.at< cv::Vec3b>(i,j)[1];
arrimg[i][j].red = image.at< cv::Vec3b>(i,j)[2];
}
}
//开始检测,返回一系列的边界框
clock_t start;
int cnt = 0;
start = clock();
std::vector<dlib::rectangle> dets = detector(arrimg);
start = clock() -start;
printf("detection time is: %f ms\n", (double(start))/CLOCKS_PER_SEC*1000);
//cout<<"time is "<<start/10e3<<endl;
//cout << cnt++ <<endl;
for(int i = 0;i < dets.size();i++)
{
//Bbox tmp = DetBox[i];
dlib::rectangle tmp = dets[i];
//cv::rectangle(image, Point(tmp.y1, tmp.x1), Point(tmp.y2, tmp.x2), Scalar(0,0,255), 1,4,0);
//Mat srcROI(image, Rect(tmp.y1,tmp.x1,tmp.y2 - tmp.y1,tmp.x2-tmp.x1));
cv::rectangle(image, Point(tmp.left(), tmp.top()), Point(tmp.right(), tmp.bottom()), Scalar(0,0,255), 1,4,0);
Mat srcROI(image, Rect(tmp.left(),tmp.top(),tmp.right()-tmp.left(),tmp.bottom() - tmp.top()));
Mat img2;
cvtColor(srcROI,img2,CV_RGB2GRAY);
img2.convertTo(img2, CV_32FC1);
Size dsize = Size(60,60);
Mat img3 = Mat(dsize, CV_32FC1);
resize(img2, img3, dsize, 0,0,INTER_CUBIC);
Mat tmp_m, tmp_sd;
double m = 0, sd = 0;
meanStdDev(img3, tmp_m, tmp_sd);
m = tmp_m.at<double>(0,0);
sd = tmp_sd.at<double>(0,0);
img3 = (img3 - m)/(0.000001 + sd);
if (img3.channels() * img3.rows * img3.cols != net->input_blobs()[0]->count())
LOG(FATAL) << "Incorrect " << image << ", resize to correct dimensions.\n";
// prepare data into array
float *data = (float*)malloc( img3.rows * img3.cols * sizeof(float));
int pix_count = 0;
for (int i = 0; i < img3.rows; ++i) {
for (int j = 0; j < img3.cols; ++j) {
float pix = img3.at<float>(i, j);
float* p = (float*)(data);
p[pix_count] = pix;
++pix_count;
}
}
std::vector<Blob<float>*> in_blobs = net->input_blobs();
in_blobs[0]->Reshape(1, 1, img3.rows, img3.cols);
net->Reshape();
in_blobs[0]->set_cpu_data((float*)data);
Timer total_timer;
total_timer.Start();
net->Forward();
cout << " total time = " << total_timer.MicroSeconds() / 1000 <<endl;
const boost::shared_ptr<Blob<float> > feature_blob = net->blob_by_name("Dense3");//获取该层特征
float feat_dim = feature_blob->count() / feature_blob->num();//计算特征维度
cout << feat_dim << endl;
const float* data_ptr = (const float *)feature_blob->cpu_data();//特征块数据
std::vector<float> feat2;
for (int i = 0; i < feat_dim; i++)
{
feat2.push_back(*data_ptr);
if (i < feat_dim - 1)
data_ptr++;
}
for(int i = 0;i < feat_dim/2;i++)
{
Point x = Point(int(feat2[2*i]*(tmp.right() - tmp.left()) + tmp.left()),int(feat2[2*i + 1]*(tmp.bottom() - tmp.top()) + tmp.top()));
cv::circle(image, x, 0.1, Scalar(0, 0, 255), 4, 8, 0);
}
free(data);
}
imshow("result", image);
imwrite("/Users/CaffeMac/CaffeMac/result.jpg", image);
free(net);
image.release();
return 0;
}