-
Notifications
You must be signed in to change notification settings - Fork 0
/
sunsigmoid.m
187 lines (154 loc) · 6.67 KB
/
sunsigmoid.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
% Code with validation and input separated
clear;
inputValues1 = loadMNISTImages('train-images.idx3-ubyte');
labels1 = loadMNISTLabels('train-labels.idx1-ubyte');
inputValues=inputValues1(:,1:50000);
labels=labels1(1:50000,:);
inputValidation=inputValues1(:,50001:60000);
Validationlabels=labels1(50001:60000,:);
% Transform the labels to correct target values.
targetValues = 0.*ones(10, size(labels, 1));
for n = 1: size(labels, 1)
targetValues(labels(n) + 1, n) = 1;
end;
% Transform the labels to correct target values for validation.
targetValuesValidation = 0.*ones(10, size(Validationlabels, 1));
for n = 1: size(Validationlabels, 1)
targetValuesValidation(Validationlabels(n) + 1, n) = 1;
end;
% Choose form of MLP:
numberOfHiddenUnits = 50;
% Choose appropriate parameters.
learningRate = 0.1;
% Choose activation function.
activationFunction = @logisticSigmoid;
dActivationFunction = @dLogisticSigmoid;
% Choose batch size and epochs. Remember there are 60k input values.
batchSize = 50000;
epochs = 50;
E=1;
errorV = 0;
fprintf('Train twolayer perceptron with %d hidden units.\n', numberOfHiddenUnits);
fprintf('Learning rate: %d.\n', learningRate);
trainingSetSize = size(inputValues, 2);
% Input vector has 784 dimensions.
inputDimensions = size(inputValues, 1);
% We have to distinguish 10 digits.
outputDimensions = size(targetValues, 1);
% Initialize the weights for the hidden layer and the output layer.
hiddenWeights = rand(numberOfHiddenUnits, inputDimensions);
outputWeights = rand(outputDimensions, numberOfHiddenUnits);
hiddenWeights = hiddenWeights./size(hiddenWeights, 2);
outputWeights = outputWeights./size(outputWeights, 2);
n = zeros(batchSize);
figure; hold on;
count=0;
for i=1:epochs
for k = 1: batchSize
% Select which input vector to train on.
n(k) = k;%floor(rand(1)*trainingSetSize + 1);
% Propagate the input vector through the network.
inputVector = inputValues(:, n(k));
hiddenActualInput = hiddenWeights*inputVector;
hiddenOutputVector = activationFunction(hiddenActualInput);
outputActualInput = outputWeights*hiddenOutputVector;
outputVector = activationFunction(outputActualInput);
targetVector = targetValues(:, n(k));
% Backpropagate the errors.
outputDelta = dActivationFunction(outputActualInput).*(outputVector - targetVector);
hiddenDelta = dActivationFunction(hiddenActualInput).*(outputWeights'*outputDelta);
outputWeights = outputWeights - learningRate.*outputDelta*hiddenOutputVector';
hiddenWeights = hiddenWeights - learningRate.*hiddenDelta*inputVector';
if mod(k,10000)==0
fprintf('epoch %d', i);
fprintf('At %d\n', k);
% Calculate the error for plotting.
count=count+1;
error = 0;
classificationErrorsTr = 0;
correctlyClassifiedTr = 0;
for k1 = 1: batchSize
inputVector = inputValues(:, k1);
targetVector = targetValues(:,k1);
outputVectorTr=activationFunction(outputWeights*activationFunction(hiddenWeights*inputVector));
error = error + norm(outputVectorTr - targetVector, 2);
max = -100;
classTr((k1)) = 1;
for ii = 1: size(outputVector, 1)
if outputVectorTr(ii) > max
max = outputVectorTr(ii);
classTr((k1)) = ii-1;
end;
end;
if classTr(k1) == labels((k1))
correctlyClassifiedTr = correctlyClassifiedTr + 1;
else
classificationErrorsTr = classificationErrorsTr + 1;
end;
end;
classification_accuracyTr(count)=(correctlyClassifiedTr/batchSize)*100;
errorTr(count) = error/batchSize;
plot(count, errorTr(count),'b-*');
errorV = 0;
classificationErrorsV = 0;
correctlyClassifiedV = 0;
for k2 = 1: size(inputValidation,2)
inputVector = inputValidation(:,k2);
targetVector = targetValuesValidation(:,k2);
output_val=activationFunction(outputWeights*activationFunction(hiddenWeights*inputVector));
errorV = errorV + norm(output_val - targetVector, 2);
max = -100;
classVal(k2) = 1;
for ii = 1: size(output_val, 1)
if output_val(ii) > max
max = output_val(ii);
classVal(k2) = ii-1;
end;
end;
if classVal(k2) == Validationlabels(k2)
correctlyClassifiedV = correctlyClassifiedV + 1;
else
classificationErrorsV = classificationErrorsV + 1;
end;
end;
classification_accuracyV(count)=(correctlyClassifiedV/size(inputValidation,2))*100;
errorVal(count) = errorV/size(inputValidation,2);
plot(count, errorVal(count),'g-o');
%xlabel('Number of epochs');
ylabel('MSE');
title('Learning Curve Of Neural Network with 1 hidden layer(150)');
end
end;
end;
inputTesting = loadMNISTImages('t10k-images.idx3-ubyte');
Testlabels = loadMNISTLabels('t10k-labels.idx1-ubyte');
Testinglabels=Testlabels(1:10000,:);
% Transform the labels to correct target values for validation.
targetValuesTesting = 0.*ones(10, size(Testinglabels, 1));
for n = 1: size(Testinglabels, 1)
targetValuesTesting(Testinglabels(n) + 1, n) = 1;
end;
classificationErrorsT = 0;
correctlyClassifiedT = 0;
confusionmat=zeros(10,10);
for k = 1: size(inputTesting,2)
inputVector = inputTesting(:,k);
targetVector = targetValuesTesting(:,k);
output_val=activationFunction(outputWeights*activationFunction(hiddenWeights*inputVector));
max = -100;
classVal(k) = 1;
for ii = 1: size(output_val, 1)
if output_val(ii) > max
max = output_val(ii);
classVal(k) = ii-1;
end;
end;
if classVal(k) == Testinglabels(k)
correctlyClassifiedT = correctlyClassifiedT + 1;
confusionmat(classVal(k)+1,classVal(k)+1)=confusionmat(classVal(k)+1,classVal(k)+1)+1;
else
classificationErrorsT = classificationErrorsT + 1;
confusionmat(Testinglabels(k)+1,classVal(k)+1)=confusionmat(Testinglabels(k)+1,classVal(k)+1)+1;
end;
end;
classification_accuracyT=(correctlyClassifiedT/size(inputTesting,2))*100;