-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathElements.fs
592 lines (530 loc) · 26.4 KB
/
Elements.fs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
namespace Elements
open System
open Tensor
open Tensor.Algorithm
/// element expression
module Elements =
/// An expression for an index as a linear combination.
[<StructuredFormatDisplay("{Pretty}")>]
type IdxExpr =
IdxExpr of Map<string, Rat>
with
static member zero =
IdxExpr Map.empty
static member one =
IdxExpr.factor "1" Rat.One
static member named name =
IdxExpr.factor name Rat.One
static member constant value =
value * IdxExpr.one
static member factor dim value =
IdxExpr (Map [dim, value])
static member (~-) (IdxExpr af) =
af |> Map.map (fun ai av -> -av) |> IdxExpr
static member (+) (IdxExpr af, IdxExpr bf) =
let f = bf |> Map.fold (fun f i bv -> match f |> Map.tryFind i with
| Some v -> f |> Map.add i (v+bv)
| None -> f |> Map.add i bv) af
IdxExpr f
static member (-) (a: IdxExpr, b: IdxExpr) =
a + (-b)
static member (*) (f: Rat, IdxExpr bf) =
bf |> Map.map (fun bi bv -> f * bv) |> IdxExpr
static member (/) (IdxExpr af, f: Rat) =
af |> Map.map (fun ai av -> av / f) |> IdxExpr
member this.Pretty =
let (IdxExpr f) = this
let sf =
Map.toList f
|> List.map fst
|> List.sort
|> List.choose (fun n ->
if f.[n] = Rat.Zero then None
elif f.[n] = Rat.One then Some n
elif f.[n] = Rat.MinusOne then Some ("-" + n)
elif n = "1" then Some (sprintf "%A" f.[n])
else Some (sprintf "%A*%s" f.[n] n))
if List.isEmpty sf then "0" else sf |> String.concat " + "
static member name (IdxExpr f) =
f |> Map.toList |> List.exactlyOne |> fst
member this.Name = IdxExpr.name this
static member eval idxEnv (IdxExpr f) =
let idxEnv = idxEnv |> Map.add "1" Rat.One
f |> Map.fold (fun s i v -> s + v * idxEnv.[i]) Rat.Zero
static member subst (repl: Map<string, IdxExpr>) (IdxExpr f) =
(IdxExpr.zero, f) ||> Map.fold (fun r i v ->
match repl |> Map.tryFind i with
| Some iv -> r + v * iv
| None -> r + IdxExpr.factor i v)
static member constVal (IdxExpr f) =
match f |> Map.tryFind "1" with
| Some v -> v
| None -> Rat.Zero
static member ofSeq indices values =
Seq.zip indices values
|> Map.ofSeq
|> IdxExpr
/// Matches an index expression that consists only of a constant.
let (|ConstIdxExpr|_|) (IdxExpr f) =
let f = f |> Map.toList |> List.filter (fun (_, v) -> v <> Rat.Zero)
match f with
| [] -> Some Rat.Zero
| [i, v] when i = "1" -> Some v
| _ -> None
/// Matches an index expression that consists only of a single (non-constant) factor.
let (|SingleIdxExpr|_|) (IdxExpr f) =
let f = f |> Map.toList |> List.filter (fun (_, v) -> v <> Rat.Zero)
match f with
| [i, v] when i <> "1" -> Some (i, v)
| _ -> None
/// Index expressions for all indicies of a tensor.
[<StructuredFormatDisplay("{Pretty}")>]
type IdxExprs =
IdxExprs of IdxExpr list
with
static member toMatrix inNames (IdxExprs idx) =
let nIn = List.length inNames |> int64
let nOut = idx |> List.length |> int64
let m = HostTensor.zeros [nOut; nIn]
idx |> List.iteri (fun r (IdxExpr f) ->
f |> Map.iter (fun name v ->
match inNames |> List.tryFindIndex ((=) name) with
| Some c -> m.[[int64 r; int64 c]] <- v
| None -> failwithf "dimension %s does not exist" name))
m
member this.Pretty =
let (IdxExprs idx) = this
sprintf "%A" idx
static member eval idxEnv (IdxExprs idx) =
idx |> List.map (IdxExpr.eval idxEnv)
static member subst repl (IdxExprs idx) =
idx |> List.map (IdxExpr.subst repl) |> IdxExprs
static member length (IdxExprs idx) =
List.length idx
type LeafOp =
| Const of float
| IdxValue of idx:IdxExpr
| Argument of name:string * idxs:IdxExprs
and UnaryOp =
| Negate
| Abs
| Sgn
| Log
| Log10
| Exp
| Tanh
| Sqrt
| Sum of idx:string * lows:IdxExpr list * highs:IdxExpr list
and BinaryOp =
| Add
| Substract
| Multiply
| Divide
| Modulo
| Power
| IdxIf of idx:IdxExpr * cmp:IdxComparison
and IdxComparison =
| EqualToZero
| GreaterOrEqualToZero
| Integer
/// an element expression
and [<StructuredFormatDisplay("{Pretty}")>]
ElemExpr =
| Leaf of LeafOp
| Unary of UnaryOp * ElemExpr
| Binary of BinaryOp * ElemExpr * ElemExpr
and [<StructuredFormatDisplay("{Pretty}")>]
ElemFunc = {
Name: string
DimNames: string list
DimSize: Map<string, int64>
Expr: ElemExpr
ArgShapes: Map<string, int64 list>
} with
member this.Pretty =
let dims = this.DimNames |> String.concat "; "
sprintf "%s[%s] = %A" this.Name dims this.Expr
member this.Shape =
this.DimNames |> List.map (fun d -> this.DimSize.[d])
/// Returns all arguments occuring in the given expression.
let rec extractArgs expr =
match expr with
| Leaf (Argument (name, idxs)) -> Set [name, idxs]
| Leaf _ -> Set.empty
| Unary (_, a) -> extractArgs a
| Binary (_, a, b) -> Set.union (extractArgs a) (extractArgs b)
/// Builds a function.
let func name dimNames dimSizes argShapes expr =
for (argName, argIdx) in extractArgs expr do
match argShapes |> Map.tryFind argName with
| Some shp when IdxExprs.length argIdx <> List.length shp ->
failwithf "shape dimensionality mismatch for argument %s" argName
| Some shp -> ()
| None -> failwithf "no shape specified for argument %s" argName
{Name=name; DimNames=dimNames; DimSize=dimSizes; Expr=expr; ArgShapes=argShapes}
/// a constant value given by a ConstSpec
let scalar v = Leaf (Const v)
type ElemExpr with
// elementwise unary
static member (~+) (a: ElemExpr) = a
static member (~-) (a: ElemExpr) = Unary(Negate, a)
static member Abs (a: ElemExpr) = Unary(Abs, a)
static member Sgn (a: ElemExpr) = Unary(Sgn, a)
static member Log (a: ElemExpr) = Unary(Log, a)
static member Log10 (a: ElemExpr) = Unary(Log10, a)
static member Exp (a: ElemExpr) = Unary(Exp, a)
static member Tanh (a: ElemExpr) = Unary(Tanh, a)
static member Sqrt (a: ElemExpr) = Unary(Sqrt, a)
// elementwise binary
static member (+) (a: ElemExpr, b: ElemExpr) = Binary(Add, a, b)
static member (-) (a: ElemExpr, b: ElemExpr) = Binary(Substract, a, b)
static member (*) (a: ElemExpr, b: ElemExpr) = Binary(Multiply, a, b)
static member (/) (a: ElemExpr, b: ElemExpr) = Binary(Divide, a, b)
static member (%) (a: ElemExpr, b: ElemExpr) = Binary(Modulo, a, b)
static member Pow (a: ElemExpr, b: ElemExpr) = Binary(Power, a, b)
static member ( *** ) (a: ElemExpr, b: ElemExpr) = a ** b
// elementwise binary with basetype
static member (+) (a: ElemExpr, b: float) = a + (scalar b)
static member (-) (a: ElemExpr, b: float) = a - (scalar b)
static member (*) (a: ElemExpr, b: float) = a * (scalar b)
static member (/) (a: ElemExpr, b: float) = a / (scalar b)
static member (%) (a: ElemExpr, b: float) = a % (scalar b)
static member Pow (a: ElemExpr, b: float) = a ** (scalar b)
static member ( *** ) (a: ElemExpr, b: float) = a ** (scalar b)
static member (+) (a: float, b: ElemExpr) = (scalar a) + b
static member (-) (a: float, b: ElemExpr) = (scalar a) - b
static member (*) (a: float, b: ElemExpr) = (scalar a) * b
static member (/) (a: float, b: ElemExpr) = (scalar a) / b
static member (%) (a: float, b: ElemExpr) = (scalar a) % b
static member Pow (a: float, b: ElemExpr) = (scalar a) ** b
static member ( *** ) (a: float, b: ElemExpr) = (scalar a) ** b
member private this.PrettyAndPriority =
match this with
| Leaf (op) ->
let myPri = 20
let myStr =
match op with
| Const v -> sprintf "%g" v
| IdxValue idx -> sprintf "(%A)" idx
| Argument (name, idxs) -> sprintf "%s%A" name idxs
myStr, myPri
| Unary (op, a) ->
let myPri = 10
let aStr, aPri = a.PrettyAndPriority
let aStr =
if myPri > aPri then sprintf "(%s)" aStr
else aStr
let myStr =
match op with
| Negate -> sprintf "(-%s)" aStr
| Abs -> sprintf "abs %s" aStr
| Sgn -> sprintf "sgn %s" aStr
| Log -> sprintf "log %s" aStr
| Log10 -> sprintf "log10 %s" aStr
| Exp -> sprintf "exp %s" aStr
| Tanh -> sprintf "tanh %s" aStr
| Sqrt -> sprintf "sqrt %s" aStr
| Sum (sym, lows, highs) ->
let lowsStr =
match lows with
| [ConstIdxExpr low] -> sprintf "%A" low
| [low] -> sprintf "(%A)" low
| _ -> sprintf "(max %A)" lows
let highsStr =
match highs with
| [ConstIdxExpr high] -> sprintf "%A" high
| [high] -> sprintf "(%A)" high
| _ -> sprintf "(min %A)" highs
sprintf "sum{%s}_%s^%s (%s)" sym lowsStr highsStr aStr
myStr, myPri
| Binary(op, a, b) ->
let aStr, aPri = a.PrettyAndPriority
let bStr, bPri = b.PrettyAndPriority
match op with
| Add | Substract | Multiply | Divide | Modulo | Power ->
let mySym, myPri =
match op with
| Add -> "+", 1
| Substract -> "-", 1
| Multiply -> "*", 2
| Divide -> "/", 2
| Modulo -> "%", 2
| Power -> "**", 5
| _ -> failwith "unexpected"
let aStr =
if myPri > aPri then sprintf "(%s)" aStr
else aStr
let bStr =
if myPri > bPri then sprintf "(%s)" bStr
else bStr
let myStr = sprintf "%s %s %s" aStr mySym bStr
myStr, myPri
| IdxIf (idx, cmp) ->
let cmpStr =
match cmp with
| GreaterOrEqualToZero -> ">= 0"
| EqualToZero -> "= 0"
| Integer -> "is int"
sprintf "if {%A %s} then (%s) else (%s)" idx cmpStr aStr bStr, 0
member this.Pretty = this.PrettyAndPriority |> fst
/// sign keeping type
let sgn (a: ElemExpr) =
ElemExpr.Sgn a
/// square root
let sqrtt (a: ElemExpr) =
ElemExpr.Sqrt a
/// index symbol for given dimension of the result
let idxValue idx =
Leaf (IdxValue idx)
/// specifed element of argument
let arg name idx =
Leaf (Argument (name, IdxExprs idx))
/// index of given name
let pos name = IdxExpr.factor name Rat.One
/// constant index value
let idxConst v = IdxExpr.factor "1" v
/// index value one
let idxOne = idxConst Rat.One
/// Summation over an index.
let sum idx lows highs a =
Unary (Sum (idx, lows, highs), a)
/// Summation over an index using constant low and high values.
let sumConstRng idx (low: int64) (high: int64) a =
sum idx [IdxExpr.constant (Rat low)] [IdxExpr.constant (Rat high)] a
/// Expression conditioned on index values.
let idxIf idx cmp thenExpr elseExpr =
match cmp, idx with
| EqualToZero, ConstIdxExpr v when v = Rat.Zero -> thenExpr
| EqualToZero, ConstIdxExpr v -> elseExpr
| GreaterOrEqualToZero, ConstIdxExpr v when v >= Rat.Zero -> thenExpr
| GreaterOrEqualToZero, ConstIdxExpr v -> elseExpr
| _ -> Binary (IdxIf (idx, cmp), thenExpr, elseExpr)
/// Substitutes the specified size symbols with their replacements.
let rec substIdx repl expr =
let sub = substIdx repl
match expr with
| Leaf (IdxValue idx) -> Leaf (IdxValue (IdxExpr.subst repl idx))
| Leaf (Argument (name, idxs)) -> Leaf (Argument (name, IdxExprs.subst repl idxs))
| Leaf (op) -> Leaf (op)
| Unary (Sum (idx, lows, highs), a) ->
Unary (Sum (idx, lows |> List.map (IdxExpr.subst repl), highs |> List.map (IdxExpr.subst repl)),
substIdx (repl |> Map.remove idx) a)
| Unary (op, a) -> Unary (op, sub a)
| Binary (IdxIf (idx, cmp), a, b) ->
Binary (IdxIf (idx |> IdxExpr.subst repl, cmp), sub a, sub b)
| Binary (op, a, b) -> Binary (op, sub a, sub b)
/// Evaluates the given expression.
let rec evalExpr (argEnv: Map<string, Tensor<float>>) idxEnv expr =
let subEval = evalExpr argEnv idxEnv
match expr with
| Leaf op ->
match op with
| Const v -> v
| IdxValue idx -> idx |> IdxExpr.eval idxEnv |> float
| Argument (name, idxs) ->
let idxs = idxs |> IdxExprs.eval idxEnv |> List.map int64
match argEnv |> Map.tryFind name with
| Some arg -> arg.[idxs]
| None -> failwithf "argument %s not present in argument environment" name
| Unary (op, a) ->
match op with
| Negate -> -(subEval a)
| Abs -> abs (subEval a)
| Sgn -> Operators.sgn (subEval a)
| Log -> log (subEval a)
| Log10 -> log10 (subEval a)
| Exp -> exp (subEval a)
| Tanh -> tanh (subEval a)
| Sqrt -> sqrt (subEval a)
| Sum (sym, lows, highs) ->
let low = lows |> List.map (IdxExpr.eval idxEnv) |> List.max |> ceil
let high = highs |> List.map (IdxExpr.eval idxEnv) |> List.min |> floor
seq {low .. high}
|> Seq.map (fun v -> evalExpr argEnv (idxEnv |> Map.add sym v) a)
|> Seq.sum
| Binary (op, a, b) ->
match op with
| Add -> (subEval a) + (subEval b)
| Substract -> (subEval a) - (subEval b)
| Multiply -> (subEval a) * (subEval b)
| Divide -> (subEval a) / (subEval b)
| Modulo -> (subEval a) % (subEval b)
| Power -> (subEval a) ** (subEval b)
| IdxIf (idx, cmp) ->
let idxVal = idx |> IdxExpr.eval idxEnv
match cmp with
| EqualToZero when idxVal = Rat.Zero -> subEval a
| EqualToZero -> subEval b
| GreaterOrEqualToZero when idxVal >= Rat.Zero -> subEval a
| GreaterOrEqualToZero -> subEval b
| Integer when Rat.isInteger idxVal -> subEval a
| Integer -> subEval b
/// Evaluates the given function.
let evalFunc argEnv (func: ElemFunc) =
let fv = HostTensor.zeros func.Shape
for pos in Tensor.Backend.TensorLayout.allIdxOfShape func.Shape do
let idxEnv =
List.zip pos func.DimNames
|> List.fold (fun env (p, name) -> env |> Map.add name (Rat p)) Map.empty
fv.[pos] <- evalExpr argEnv idxEnv func.Expr
fv
/// Calculates the derivative expression given the incoming derivative dExpr.
let rec derivExpr syms constrs expr dExpr =
// constrs >= 0
let d = dExpr
let rds = derivExpr syms constrs
match expr with
| Leaf op ->
match op with
| Const v -> []
| IdxValue idx -> []
| Argument (name, idxs) -> [(name, idxs), (syms, constrs, d)]
| Unary (op, a) ->
match op with
| Negate -> -d |> rds a
| Abs -> d * sgn a |> rds a
| Sgn -> []
| Log -> d * (a ** -1.0) |> rds a
| Log10 -> d |> rds (log a / log 10.0)
| Exp -> d * exp a |> rds a
| Tanh -> d * (1.0 - (tanh a)**2.0) |> rds a
| Sqrt -> d * (1.0 / (2.0 * sqrtt a)) |> rds a
| Sum (sym, lows, highs) ->
// low limits: lows <= sym => sym - lows >= 0
let lowConstrs = lows |> List.map (fun low -> IdxExpr.named sym - low) |> Set.ofList
// high limits: sym <= highs => -sym + highs >= 0
let highConstrs = highs |> List.map (fun high -> -IdxExpr.named sym + high) |> Set.ofList
derivExpr (syms |> Set.add sym) (Set.unionMany [constrs; lowConstrs; highConstrs]) a d
| Binary (op, a, b) ->
let (.+) da db = List.append (rds a da) (rds b db)
match op with
| Add -> d .+ d
| Substract -> d .+ (-d)
| Multiply -> (d * b) .+ (a * d)
| Divide -> d |> rds (a * b ** -1.0)
| Modulo -> failwith "buggy"
| Power -> (d * b * a**(b - 1.0)) .+ (d * a**b * log a)
| IdxIf (idx, cmp) ->
(idxIf idx cmp d (scalar 0.0)) .+ (idxIf idx cmp (scalar 0.0) d)
/// Calculates the derivative functions of y w.r.t. all of its arguments.
let derivFunc (y: ElemFunc) =
// get dimension names and add constant bias dimension
let ySyms = y.DimNames @ ["1"] |> Set.ofList
// incoming derivative dy w.r.t. function y
let dyArgName = sprintf "d%s" y.Name
let dy = arg dyArgName (y.DimNames |> List.map (fun d -> IdxExpr.factor d Rat.One))
let argShapes = y.ArgShapes |> Map.add dyArgName y.Shape
// Build constraints from ranges of y.
// low limit: y_i >= 0
let rngLowConstrs = y.DimNames |> List.map (fun name -> IdxExpr.named name) |> Set.ofList
// low limit: y_i <= size_i-1 => -y_i + size_i - 1 >= 0
let rngHighConstrs =
y.DimSize
|> Map.toSeq
|> Seq.map (fun (name, size) -> -IdxExpr.named name + IdxExpr.constant (Rat (size-1L)))
|> Set.ofSeq
let rngConstrs = Set.union rngLowConstrs rngHighConstrs
// Calculate derivative expressions w.r.t. all indiced arguments.
let dxs = derivExpr ySyms rngConstrs y.Expr dy
// Perform index substitution and nullspace summation on the derivatives of all arguments.
let processDeriv xName (IdxExprs xIdxs) (ySyms: Set<string>) (yConstrs: Set<IdxExpr>) dx = //(yIdxs1: Map<string, int64*int64>) dx =
// get names of used indices
let yIdxNames1 = Set.toList ySyms
// name the argument and its indices
let dxName = sprintf "d%s" xName
let dxIdxNames = xIdxs |> List.mapi (fun i _ -> sprintf "%s_%d" dxName i)
let dxIdxSizes = dxIdxNames |> List.mapi (fun i name -> name, y.ArgShapes.[xName].[i]) |> Map.ofList
// Add "1" dimension to indices for constant terms.
let dxIdxs1, dxIdxNames1 = xIdxs @ [IdxExpr.one], dxIdxNames @ ["1"]
// Construct matrix mapping from function indices to argument indices yToX[xDim, yDim].
let yToX = IdxExprs.toMatrix yIdxNames1 (IdxExprs dxIdxs1) |> Tensor<bigint>.convert
// Compute the generalized inverse of it:
// y = XToY .* x + Nullspace .* z
let xToY, xSolvability, yNull = LinAlg.integerInverse yToX
// Build constraint matrix C from constraints specified as index expressions.
// Constraints are specified as: C .* y >= 0
// This translates to:
// C .* XToY .* x + C .* Nullspace .* z >= 0
// C .* Nullspace .* z >= - C .* XToY .* x
let yConstrs = yConstrs |> Set.toList |> IdxExprs
let C = IdxExprs.toMatrix yIdxNames1 yConstrs
// Compute the summation range constraints.
let CNull = C .* Tensor<Rat>.convert yNull
let sumConstr = FourierMotzkin.solve CNull
// Perform summation over nullspace.
let rec buildSum summand sols sumSyms =
match sols with
| FourierMotzkin.Feasibility fs :: rSols ->
let summand = buildSum summand rSols sumSyms
// System is feasible if fs .* b <= 0, where b = - C .* XToY .* x
let fsMat = -fs .* C .* xToY |> HostTensor.toList2D
let fsIdxs =
fsMat
|> List.map (fun bFacs -> IdxExpr.ofSeq dxIdxNames1 bFacs)
|> List.filter (fun ie ->
// Filter inequalaties that are always true.
// Each inequality of the form cv + iv * "i" <= 0 is considered.
let cv = IdxExpr.constVal ie
match ie - cv * IdxExpr.one with
// cv - "i" <= 0 => cv <= "i" => always true for cv <= 0 because "i" >= 0
| SingleIdxExpr (i, iv) when iv = Rat.MinusOne && cv <= Rat.Zero -> false
// cv + "i" <= 0 => "i" <= -cv => always true for -cv >= size_i-1 because "i" <= size_i-1
| SingleIdxExpr (i, iv) when iv = Rat.One && -cv >= Rat (dxIdxSizes.[i]-1L) -> false
| _ -> true)
(summand, fsIdxs) ||> List.fold (fun s fsIdx -> idxIf -fsIdx GreaterOrEqualToZero s (scalar 0.0))
| FourierMotzkin.Range rng :: rSols ->
let sumSym = sprintf "%s_z%d" dxName rng.Idx
let summand = buildSum summand rSols (sumSym::sumSyms)
// The limits are given by
// Low limits: x[Idx] >= BLow .* b - SLow .* z.[Idx+1L..]
// High limits: x[Idx] <= BHigh .* b - SHigh .* z.[Idx+1L..]
// where b = - C .* XToY .* x
let bMat = -C .* xToY
let bLowMat = rng.BLow .* bMat |> HostTensor.toList2D
let bHighMat = rng.BHigh .* bMat |> HostTensor.toList2D
let sLowMat = rng.SLow |> HostTensor.toList2D
let sHighMat = rng.SHigh |> HostTensor.toList2D
let idxExpr bMat sMat =
List.zip bMat sMat
|> List.map (fun (bFacs, sFacs) -> IdxExpr.ofSeq dxIdxNames1 bFacs + IdxExpr.ofSeq sumSyms sFacs)
let lows, highs = idxExpr bLowMat sLowMat, idxExpr bHighMat sHighMat
sum sumSym lows highs summand
| [] ->
let xToY = xToY |> HostTensor.toList2D
let zToY = yNull |> Tensor<Rat>.convert |> HostTensor.toList2D
let subs =
List.zip3 yIdxNames1 xToY zToY
|> List.map (fun (name, argFacs, nsFacs) ->
name, IdxExpr.ofSeq dxIdxNames1 argFacs + IdxExpr.ofSeq sumSyms nsFacs)
|> Map.ofList
|> Map.add "1" IdxExpr.one
substIdx subs summand
let dxSummed = buildSum dx sumConstr []
// Check that all y are integer.
// Check is only required for y that contain non-integer coefficients.
let intIdxs =
xToY
|> HostTensor.toList2D
|> List.filter (List.exists (Rat.isInteger >> not))
|> List.map (IdxExpr.ofSeq dxIdxNames1)
let dxIntChecked =
(dxSummed, intIdxs) ||> List.fold (fun s intIdx -> idxIf intIdx Integer s (scalar 0.0))
// Check solvability.
let solIdxs =
xSolvability
|> Tensor<Rat>.convert
|> HostTensor.toList2D
|> List.map (fun sFacs -> IdxExpr.ofSeq dxIdxNames1 sFacs)
let dxSolChecked =
(dxIntChecked, solIdxs) ||> List.fold (fun s solIdx -> idxIf solIdx EqualToZero s (scalar 0.0))
// Build derivative function.
func dxName dxIdxNames dxIdxSizes argShapes dxSolChecked
// Perform index substitution on the derivatives of all arguments and sum by argument.
let dxFns =
dxs
|> List.map (fun ((xName, xIdxs), (syms, constrs, dx)) -> xName, processDeriv xName xIdxs syms constrs dx)
|> List.groupBy fst
|> List.map (fun (xName, dxs) ->
xName, dxs |> List.map snd |> List.reduce (fun a {Expr=bExpr} -> {a with Expr=a.Expr + bExpr}))
|> Map.ofList
dxFns