-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathbode_shifter_1431.xml
172 lines (142 loc) · 6.94 KB
/
bode_shifter_1431.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
<?xml version="1.0"?>
<!DOCTYPE ladspa SYSTEM "ladspa-swh.dtd">
<?xml-stylesheet href="ladspa.css" type="text/css"?>
<ladspa>
<global>
<meta name="maker" value="Steve Harris <[email protected]>"/>
<meta name="copyright" value="GPL"/>
<meta name="properties" value="HARD_RT_CAPABLE"/>
<code><![CDATA[
#include <math.h>
#include "ladspa-util.h"
#define SIN_T_SIZE 1024
#define D_SIZE 256
#define NZEROS 200
/* The non-zero taps of the Hilbert transformer */
static float xcoeffs[] = {
+0.0008103736f, +0.0008457886f, +0.0009017196f, +0.0009793364f,
+0.0010798341f, +0.0012044365f, +0.0013544008f, +0.0015310235f,
+0.0017356466f, +0.0019696659f, +0.0022345404f, +0.0025318040f,
+0.0028630784f, +0.0032300896f, +0.0036346867f, +0.0040788644f,
+0.0045647903f, +0.0050948365f, +0.0056716186f, +0.0062980419f,
+0.0069773575f, +0.0077132300f, +0.0085098208f, +0.0093718901f,
+0.0103049226f, +0.0113152847f, +0.0124104218f, +0.0135991079f,
+0.0148917649f, +0.0163008758f, +0.0178415242f, +0.0195321089f,
+0.0213953037f, +0.0234593652f, +0.0257599469f, +0.0283426636f,
+0.0312667947f, +0.0346107648f, +0.0384804823f, +0.0430224431f,
+0.0484451086f, +0.0550553725f, +0.0633242001f, +0.0740128560f,
+0.0884368322f, +0.1090816773f, +0.1412745301f, +0.1988673273f,
+0.3326528346f, +0.9997730178f, -0.9997730178f, -0.3326528346f,
-0.1988673273f, -0.1412745301f, -0.1090816773f, -0.0884368322f,
-0.0740128560f, -0.0633242001f, -0.0550553725f, -0.0484451086f,
-0.0430224431f, -0.0384804823f, -0.0346107648f, -0.0312667947f,
-0.0283426636f, -0.0257599469f, -0.0234593652f, -0.0213953037f,
-0.0195321089f, -0.0178415242f, -0.0163008758f, -0.0148917649f,
-0.0135991079f, -0.0124104218f, -0.0113152847f, -0.0103049226f,
-0.0093718901f, -0.0085098208f, -0.0077132300f, -0.0069773575f,
-0.0062980419f, -0.0056716186f, -0.0050948365f, -0.0045647903f,
-0.0040788644f, -0.0036346867f, -0.0032300896f, -0.0028630784f,
-0.0025318040f, -0.0022345404f, -0.0019696659f, -0.0017356466f,
-0.0015310235f, -0.0013544008f, -0.0012044365f, -0.0010798341f,
-0.0009793364f, -0.0009017196f, -0.0008457886f, -0.0008103736f,
};
]]></code>
</global>
<plugin label="bodeShifter" id="1431" class="SpectralPlugin">
<name>Bode frequency shifter</name>
<p>A Bode/Moog Frequency Shifter is a popular analogue synth module, it works by shifting all the frequencies of an input signal up or down by a specified frequency. This version shifts in both directions at the same time as its almost no extra work and its often useful to have both directions.</p>
<p>It doesn't actually work in the same way as an analogue Bode/Moog, which use Dome filters as the core, it uses a Hilbert Transformer, which is much simpler to implement in digital systems. The output is very similar though, and people are familiar with the name Bode.</p>
<p>The theory of operation is pretty simple, and uses some clever maths to cancel out the upper or lower sidebands of a ringmodulator applied to the input signal. Read the source if you want more information. The Hilbert Transformet coefficents came from mkfilter, the excellent filter calculator, available at \url{http://www-users.cs.york.ac.uk/~fisher/mkfilter/}.</p>
<callback event="instantiate"><![CDATA[
unsigned int i;
fs = (float)s_rate;
delay = calloc(D_SIZE, sizeof(LADSPA_Data));
sint = calloc(SIN_T_SIZE + 4, sizeof(float));
dptr = 0;
phi = 0.0f;
last_shift = 0.0f;
for (i = 0; i < SIN_T_SIZE + 4; i++) {
sint[i] = sinf(2.0f * M_PI * (float)i / (float)SIN_T_SIZE);
}
]]></callback>
<callback event="cleanup"><![CDATA[
free(plugin_data->delay);
free(plugin_data->sint);
]]></callback>
<callback event="run"><![CDATA[
unsigned long pos;
unsigned int i;
float hilb, rm1, rm2;
float shift_i = last_shift;
int int_p;
float frac_p;
const float shift_c = f_clamp(shift, 0.0f, 10000.0f);
const float shift_inc = (shift_c - last_shift) / (float)sample_count;
const float freq_fix = (float)SIN_T_SIZE / fs;
for (pos = 0; pos < sample_count; pos++) {
delay[dptr] = input[pos];
/* Perform the Hilbert FIR convolution
* (probably FFT would be faster) */
hilb = 0.0f;
for (i = 0; i < NZEROS/2; i++) {
hilb += (xcoeffs[i] * delay[(dptr - i*2) & (D_SIZE - 1)]);
}
/* Calcuate the table positions for the sine modulator */
int_p = f_round(floor(phi));
/* Calculate ringmod1, the transformed input modulated with a shift Hz
* sinewave. This creates a +180 degree sideband at source-shift Hz and
* a 0 degree sindeband at source+shift Hz */
frac_p = phi - int_p;
/* the Hilbert has a gain of pi/2, which we have to correct for, thanks
* Fons! */
rm1 = hilb * 0.63661978f * cube_interp(frac_p, sint[int_p],
sint[int_p+1], sint[int_p+2], sint[int_p+3]);
/* Calcuate the table positions for the cosine modulator */
int_p = (int_p + SIN_T_SIZE / 4) & (SIN_T_SIZE - 1);
/* Calculate ringmod2, the delayed input modulated with a shift Hz
* cosinewave. This creates a 0 degree sideband at source+shift Hz
* and a -180 degree sindeband at source-shift Hz */
rm2 = delay[(dptr - 99) & (D_SIZE - 1)] * cube_interp(frac_p,
sint[int_p], sint[int_p+1], sint[int_p+2], sint[int_p+3]);
/* Output the sum and differences of the ringmods. The +/-180 degree
* sidebands cancel (more of less) and just leave the shifted
* components */
buffer_write(dout[pos], (rm2 - rm1) * 0.5f);
buffer_write(uout[pos], (rm2 + rm1) * 0.5f);
dptr = (dptr + 1) & (D_SIZE - 1);
phi += shift_i * freq_fix;
while (phi > SIN_T_SIZE) {
phi -= SIN_T_SIZE;
}
shift_i += shift_inc;
}
plugin_data->dptr = dptr;
plugin_data->phi = phi;
plugin_data->last_shift = shift_c;
*(plugin_data->latency) = 99;
]]></callback>
<port label="shift" dir="input" type="control" hint="default_0">
<name>Frequency shift</name>
<p>Controls the frequency shift applied to the input signal, in Hz. Note, this is not a pitch shift, so you not get natural sounding results out, it is an audio effect popular with modular synthesists.</p>
<range min="0" max="5000"/>
</port>
<port label="input" dir="input" type="audio">
<name>Input</name>
</port>
<port label="dout" dir="output" type="audio">
<name>Down out</name>
</port>
<port label="uout" dir="output" type="audio">
<name>Up out</name>
</port>
<port label="latency" dir="output" type="control">
<name>latency</name>
</port>
<instance-data label="delay" type="LADSPA_Data *" />
<instance-data label="dptr" type="unsigned int" />
<instance-data label="phi" type="float" />
<instance-data label="fs" type="float" />
<instance-data label="last_shift" type="float" />
<instance-data label="sint" type="float *" />
</plugin>
</ladspa>