forked from sxu39/DP-QEq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DP_QEq_ConstQ.py
executable file
·930 lines (821 loc) · 38.9 KB
/
DP_QEq_ConstQ.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
#!/bin/env python3
import deepmd_pybind
from dmff.utils import pair_buffer_scales, regularize_pairs
import jax.numpy as jnp
from dmff.admp.recip import generate_pme_recip, Ck_1
from dmff.admp.pme import energy_pme
from jax import jit, grad, jacfwd, jacrev, value_and_grad
from jax.scipy.special import erfc
import jaxopt
import os
import dpdata
from tqdm import tqdm
import freud
import numpy as np
import shutil
import jax
import dpdata
from typing import Tuple, Optional
import deepmd_pybind
import ase.io as IO
from ase.calculators.mixing import MixedCalculator, SumCalculator, LinearCombinationCalculator
from ase import units
from ase import Atoms
from ase.io.trajectory import Trajectory
from ase.md.nvtberendsen import NVTBerendsen
from ase.md.langevin import Langevin
from ase.md.npt import NPT
from ase.md.velocitydistribution import MaxwellBoltzmannDistribution
from ase.md import MDLogger
from ase.constraints import FixAtoms
from pathlib import Path
from typing import TYPE_CHECKING, Dict, List, Optional, Union
from ase.calculators.calculator import Calculator, all_changes, PropertyNotImplementedError
import time
qeq_total_time = []
dp_total_time = []
wall_total_time = []
calculate_call_time = []
qeq_charges = []
qeq_counter_list = []
qeq_energy, qeq_force = [], []
initial_charge_guess_list = []
initial_charge_guess_list.append(jnp.array(np.loadtxt("initial_charge_guess.txt")))
electrolyte_index = [1425,1426,1427,1428,1429,1430,1431,1432,1433,1434,1435,1436,1437,1438,1439,1440,1441,1442,1443,1444,1445,1446,1447,1448,1449,1450,1451,1452,1453,1454,1455,1456,1457,1458,1459,1460,1461,1462,1463,1464,1465,1466,1467,1468,1469,1470,1471,1472,1473,1474,1475,1476,1477,1478,1479,1480,1481,1482,1483,1484,1485,1486,1487,1488,1489,1490,1491,1492,1493,1494,1495,1496,1497,1498,1499,1500,1501,1502,1503,1504,1505,1506,1507,1508,1509,1510,1511,1512,1513,1514,1515,1516,1517,1518,1519,1520,1521,1522,1523,1524,1525,1526,1527,1528,1529,1530,1531,1532,1533,1534,1535,1536,1537,1538,1539,1540,1541,1542,1543,1544,1545,1546,1547,1548,1549,1550,1551,1552,1553,1554,1555,1556,1557,1558,1559,1560,1561,1562,1563,1564,1565,1566,1567,1568,1569,1570,1571,1572,1573,1574,1575,1576,1577,1578,1579,1580,1581,1582,1583,1584,1585,1586,1587,1588,1589,1590,1591,1592,1593,1594,1595,1596,1597,1598,1599,1600,1601,1602,1603,1604,1605,1606,1607,1608,1609,1610,1611,1612,1613,1614,1615,1616,1617,1618,1619,1620,1621,1622,1623,1624,1625,1626,1627,1628,1629,1630,1631,1632,1633,1634,1635,1636,1637,1638,1639,1640,1641,1642,1643,1644,1645,1646,1647,1648,1649,1650,1651,1652,1653,1654,1655,1656,1657,1658,1659,1660,1661,1662,1663,1664,1665,1666,1667,1668,1669,1670,1671,1672,1673,1674,1675,1676,1677,1678,1679,1680,1681,1682,1683,1684,1685,1686,1687,1688,1689,1690,1691,1692,1693,1694,1695,1696,1697,1698,1699,1700,1701,1702,1703,1704,1705,1706,1707,1708,1709,1710,1711,1712,1713,1714,1715,1716,1717,1718,1719,1720,1721,1722,1723,1724,1725,1726,1727,1728,1729,1730,1731,1732,1733,1734,1735,1736,1737,1738,1739,1740,1741,1742,1743,1744,1745,1746,1747,1748,1749,1750,1751,1752,1753,1754,1755,1756,1757,1758,1759,1760,1761,1762,1763,1764,1765,1766,1767,1768,1769,1770,1771,1772,1773,1774,1775,1776,1777,1778,1779,1780,1781,1782,1783,1784,1785,1786,1787,1788,1789,1790,1791,1792,1793,1794,1795,1796,1797,1798,1799,1800,1801,1802,1803,1804,1805,1806,1807,1808,1809,1810,1811,1812,1813,1814,1815,1816,1817,1818,1819,1820,1821,1822,1823,1824,1825,1826,1827,1828,1829,1830,1831,1832,1833,1834,1835,1836,1837,1838,1839,1840,1841,1842,1843,1844,1845,1846,1847,1848,1849,1850,1851,1852,1853,1854,1855,1856,1857,1858,1859,1860,1861,1862,1863,1864,1865,1866,1867,1868,1869,1870,1871,1872,1873,1874,1875,1876,1877,1878,1879,1880,1881,1882,1883,1884,1885,1886,1887,1888,1889,1890,1891,1892,1893,1894,1895,1896,1897,1898,1899,1900,1901,1902,1903,1904,1905,1906,1907,1908,1909,1910,1911,1912,1913,1914,1915,1916,1917,1918,1919,1920,1921,1922,1923,1924,1925,1926,1927,1928,1929,1930,1931,1932,1933,1934,1935,1936,1937,1938,1939,1940,1941,1942,1943,1944,1945,1946,1947,1948,1949,1950,1951,1952,1953,1954,1955,1956,1957,1958,1959,1960,1961,1962,1963,1964,1965,1966,1967,1968,1969,1970,1971,1972,1973,1974,1975,1976,1977,1978,1979,1980,1981,1982,1983,1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022,2023,2024,2025,2026,2027,2028,2029,2030,2031,2032,2033,2034,2035,2036,2037,2038,2039,2040,2041,2042,2043,2044,2045,2046,2047,2048,2049,2050,2051,2052,2053,2054,2055,2056,2057,2058,2059,2060,2061,2062,2063,2064,2065,2066,2067,2068,2069,2070,2071,2072,2073,2074,2075,2076,2077,2078,2079,2080,2081,2082,2083,2084,2085,2086,2087,2088,2089,2090,2091,2092,2093,2094,2095,2096,2097,2098,2099,2100,2101,2102,2103,2104,2105,2106,2107,2108,2109,2110,2111,2112,2113,2114,2115,2116,2117,2118,2119,2120,2121,2122,2123,2124,2125,2126,2127,2128,2129,2130,2131,2132,2133,2134,2135,2136,2137,2138,2139,2140,2141,2142,2143,2144,2145,2146,2147,2148,2149,2150,2151,2152,2153,2154,2155,2156,2157,2158,2159,2160,2161,2162,2163,2164,2165,2166,2167,2168,2169,2170,2171,2172,2173,2174,2175,2176,2177,2178,2179,2180,2181,2182,2183,2184,2185,2186,2187,2188,2189,2190,2191,2192,2193,2194,2195,2196,2197,2198,2199,2200,2201,2202,2203,2204,2205,2206,2207,2208,2209,2210,2211,2212,2213,2214,2215,2216,2217,2218,2219,2220,2221,2222,2223,2224,2225,2226,2227,2228,2229,2230,2231,2232,2233,2234,2235,2236,2237,2238,2239,2240,2241,2242,2243,2244,2245,2246,2247,2248,2249,2250,2251,2252,2253,2254,2255,2256,2257,2258,2259,2260,2261,2262,2263,2264,2265,2266,2267,2268,2269,2270,2271,2272,2273,2274,2275,2276,2277,2278,2279,2280,2281,2282,2283,2284,2285,2286,2287,2288,2289,2290,2291,2292,2293,2294,2295,2296,2297,2298,2299,2300,2301,2302,2303,2304,2305,2306,2307,2308,2309,2310,2311,2312,2313,2314,2315,2316,2317,2318,2319,2320,2321,2322,2323,2324,2325,2326,2327,2328,2329,2330,2331,2332,2333,2334,2335,2336,2337,2338,2339,2340,2341,2342,2343,2344,2345,2346,2347,2348,2349,2350,2351,2352,2353,2354,2355,2356,2357,2358,2359,2360,2361,2362,2363,2364,2365,2366,2367,2368,2369,2370,2371,2372,2373,2374,2375,2376,2377,2378,2379,2380,2381,2382,2383,2384,2385,2386,2387,2388,2389,2390,2391,2392,2393,2394,2395,2396,2397,2398,2399,2400,2401,2402,2403,2404,2405,2406,2407,2408,2409,2410,2411,2412,2413,2414,2415,2416,2417,2418,2419,2420,2421,2422,2423,2424,2425,2426,2427,2428,2429,2430,2431,2432,2433,2434,2435,2436,2437,2438,2439,2440,2441,2442,2443,2444,2445,2446,2447,2448,2449,2450,2451,2452,2453,2454,2455,2456,2457,2458,2459,2460,2461,2462,2463,2464,2465,2466,2467,2468,2469,2470,2471,2472,2473,2474,2475,2476,2477,2478,2479,2480,2481,2482,2483,2484,2485,2486,2487,2488,2489,2490,2491,2492,2493,2494,2495,2496,2497,2498,2499,2500,2501,2502,2503,2504,2505,2506,2507,2508,2509,2510,2511,2512,2513,2514,2515,2516,2517,2518,2519,2520,2521,2522,2523,2524,2525,2526,2527,2528,2529,2530,2531,2532,2533,2534,2535,2536,2537,2538,2539,2540,2541,2542,2543,2544,2545,2546,2547,2548,2549,2550,2551,2552,2553,2554,2555,2556,2557,2558,2559,2560,2561,2562,2563,2564,2565,2566,2567,2568,2569,2570,2571,2572,2573,2574,2575,2576,2577,2578,2579,2580,2581,2582,2583,2584,2585,2586,2587,2588,2589,2590,2591,2592,2593,2594,2595,2596,2597,2598,2599,2600,2601,2602,2603,2604,2605,2606,2607,2608,2609,2610,2611,2612,2613,2614,2615,2616,2617,2618,2619,2620,2621,2622,2623,2624,2625,2626,2627,2628,2629,2630,2631,2632,2633,2634,2635,2636,2637,2638,2639,2640,2641,2642,2643,2644,2645,2646,2647,2648,2649,2650,2651,2652,2653,2654,2655,2656,2657,2658,2659,2660,2661,2662,2663,2664,2665,2666,2667,2668,2669,2670,2671,2672,2673,2674,2675,2676,2677,2678,2679,2680,2681,2682,2683,2684,2685,2686,2687,2688,2689,2690,2691,2692,2693,2694,2695,2696,2697,2698,2699,2700,2701,2702,2703,2704,2705,2706,2707,2708,2709,2710,2711,2712,2713,2714,2715,2716,2717,2718,2719,2720,2721,2722,2723,2724,2725,2726,2727,2728,2729,2730,2731,2732,2733,2734,2735,2736,2737,2738,2739,2740,2741,2742,2743,2744,2745,2746,2747,2748,2749,2750,2751,2752,2753,2754,2755,2756,2757,2758,2759,2760,2761,2762,2763,2764,2765,2766,2767,2768,2769,2770,2771,2772,2773,2774,2775,2776,2777,2778,2779,2780,2781,2782,2783,2784,2785,2786,2787,2788,2789,2790,2791,2792,2793,2794,2795,2796,2797,2798,2799,2800,2801,2802,2803,2804,2805,2806,2807,2808,2809,2810,2811,2812,2813,2814,2815,2816,2817,2818,2819,2820,2821,2822,2823,2824,2825,2826,2827,2828,2829,2830,2831,2832,2833,2834,2835,2836,2837,2838,2839,2840,2841,2842,2843,2844,2845,2846,2847,2848,2849,2850,2851,2852,2853,2854,2855,2856,2857,2858,2859,2860,2861,2862,2863,2864,2865,2866,2867,2868,2869,2870,2871,2872,2873,2874,2875,2876,2877,2878,2879,2880,2881,2882,2883,2884,2885,2886,2887,2888,2889,2890,2891,2892,2893,2894,2895,2896,2897,2898,2899,2900,2901,2902,2903,2904,2905,2906,2907,2908,2909,2910,2911,2912,2913,2914,2915,2916,2917,2918,2919,2920,2921,2922,2923,2924,2925,2926,2927,2928,2929,2930,2931,2932,2933,2934,2935,2936,2937,2938,2939,2940,2941,2942,2943,2944,2945,2946,2947,2948,2949,2950,2951,2952,2953,2954,2955,2956,2957,2958,2959,2960,2961,2962,2963,2964,2965,2966,2967,2968,2969,2970,2971,2972,2973,2974,2975,2976,2977,2978,2979,2980,2981,2982,2983,2984,2985,2986,2987,2988,2989,2990,2991,2992,2993,2994,2995,2996,2997,2998,2999,3000,3001,3002,3003,3004,3005,3006,3007,3008,3009,3010,3011,3012,3013,3014,3015,3016,3017,3018,3019,3020,3021,3022,3023,3024,3025,3026,3027,3028,3029,3030,3031,3032,3033,3034,3035,3036,3037,3038,3039,3040,3041,3042,3043,3044,3045,3046,3047,3048,3049,3050,3051,3052,3053,3054,3055,3056,3057,3058,3059,3060,3061,3062,3063,3064,3065,3066,3067,3068,3069]
most_bottum_Li_index = [2,12,21,30,38,47,54,63,70,78,85,95,104,114,122,131,138,146,154,163,171,179,187,197,205,215,223,233,242,251,258,267,274,285,294,304,312,321,328,337,345,355,363,372,381,391,399,409,417,427,434,444,452,461,470,479,487,496,504,514,522,531,538,548,556,565,572,582,590,600,607,616,623,633,641,652,660,669,676,686,693,704,712,722,730,740,748,758,766,776,785,793,801,810,818,828,837,846,854,863]
most_upper_Li_index = [898,903,907,913,918,924,930,936,942,949,955,960,964,969,974,980,986,993,998,1004,1009,1016,1021,1026,1031,1036,1041,1046,1050,1056,1062,1068,1074,1078,1082,1087,1092,1098,1104,1110,1115,1120,1125,1131,1135,1140,1145,1150,1155,1160,1166,1171,1176,1182,1186,1192,1197,1203,1208,1213,1218,1224,1230,1235,1240,1246,1252,1257,1262,1267,1273,1279,1285,1290,1295,1299,1304,1310,1316,1321,1327,1331,1336,1341,1346,1351,1356,1361,1366,1371,1375,1382,1387,1393,1398,1403,1407,1413,1418,1424]
fix_Li_bottum = [2, 3, 12, 13, 21, 22, 30, 31, 38, 39, 47, 48, 54, 55, 63, 64, 70, 71, 78, 79, 85, 86, 95, 96, 104, 105, 114, 115, 122, 123, 131, 132, 138, 139, 146, 147, 154, 155, 163, 164, 171, 172, 179, 180, 187, 188, 197, 198, 205, 206, 215, 216, 223, 224, 233, 234, 242, 243, 251, 252, 258, 259, 267, 268, 274, 275, 285, 286, 294, 295, 304, 305, 312, 313, 321, 322, 328, 329, 337, 338, 345, 346, 355, 356, 363, 364, 372, 373, 381, 382, 391, 392, 399, 400, 409, 410, 417, 418, 427, 428, 434, 435, 444, 445, 452, 453, 461, 462, 470, 471, 479, 480, 487, 488, 496, 497, 504, 505, 514, 515, 522, 523, 531, 532, 538, 539, 548, 549, 556, 557, 565, 566, 572, 573, 582, 583, 590, 591, 600, 601, 607, 608, 616, 617, 623, 624, 633, 634, 641, 642, 652, 653, 660, 661, 669, 670, 676, 677, 686, 687, 693, 694, 704, 705, 712, 713, 722, 723, 730, 731, 740, 741, 748, 749, 758, 759, 766, 767, 776, 777, 785, 786, 793, 794, 801, 802, 810, 811, 818, 819, 828, 829, 837, 838, 846, 847, 854, 855, 863, 864]
fix_Li_upper = [897, 898, 902, 903, 906, 907, 912, 913, 917, 918, 923, 924, 929, 930, 935, 936, 941, 942, 948, 949, 954, 955, 959, 960, 963, 964, 968, 969, 973, 974, 979, 980, 985, 986, 992, 993, 997, 998, 1003, 1004, 1008, 1009, 1015, 1016, 1020, 1021, 1025, 1026, 1030, 1031, 1035, 1036, 1040, 1041, 1045, 1046, 1049, 1050, 1055, 1056, 1061, 1062, 1067, 1068, 1073, 1074, 1077, 1078, 1081, 1082, 1086, 1087, 1091, 1092, 1097, 1098, 1103, 1104, 1109, 1110, 1114, 1115, 1119, 1120, 1124, 1125, 1130, 1131, 1134, 1135, 1139, 1140, 1144, 1145, 1149, 1150, 1154, 1155, 1159, 1160, 1165, 1166, 1170, 1171, 1175, 1176, 1181, 1182, 1185, 1186, 1191, 1192, 1196, 1197, 1202, 1203, 1207, 1208, 1212, 1213, 1217, 1218, 1223, 1224, 1229, 1230, 1234, 1235, 1239, 1240, 1245, 1246, 1251, 1252, 1256, 1257, 1261, 1262, 1266, 1267, 1272, 1273, 1278, 1279, 1284, 1285, 1289, 1290, 1294, 1295, 1298, 1299, 1303, 1304, 1309, 1310, 1315, 1316, 1320, 1321, 1326, 1327, 1330, 1331, 1335, 1336, 1340, 1341, 1345, 1346, 1350, 1351, 1355, 1356, 1360, 1361, 1365, 1366, 1370, 1371, 1374, 1375, 1381, 1382, 1386, 1387, 1392, 1393, 1397, 1398, 1402, 1403, 1406, 1407, 1412, 1413, 1417, 1418, 1423, 1424]
def calculate_model_devi_v(vs):
vs_devi = np.std(vs, axis=0)
max_devi_v = np.max(vs_devi, axis=-1)
min_devi_v = np.min(vs_devi, axis=-1)
avg_devi_v = np.linalg.norm(vs_devi, axis=-1) / 3
return max_devi_v, min_devi_v, avg_devi_v
def calculate_model_devi_f(fs):
fs_devi = np.linalg.norm(np.std(fs, axis=0), axis=-1)
max_devi_f = np.max(fs_devi, axis=-1)
min_devi_f = np.min(fs_devi, axis=-1)
avg_devi_f = np.mean(fs_devi, axis=-1)
return max_devi_f, min_devi_f, avg_devi_f
def calculate_model_devi_e(es):
es_devi = np.std(es, axis=0)
es_devi = np.squeeze(es_devi, axis=-1)
return es_devi
def write_model_devi_out(data, fname):
header = "%10s" % ("step")
for item in "vf":
header += "%19s%19s%19s" % (f"max_devi_{item}", f"min_devi_{item}", f"avg_devi_{item}")
header += "%19s" % "devi_e"
with open(fname, "ab") as fp:
np.savetxt(fp, data, fmt=["%12d"] + ["%19.6e" for _ in range(7)], delimiter="", header=header)
def calculate_model_devi_cpp(
file_name: str = "wrapped_trajectory.traj",
file_type: str = "ase/traj",
type_dict: dict = {"Li": 0, "C": 1, "H": 2, "O": 3, "P": 4, "F": 5},
pb_file: list = ["graph.000.pb", "graph.001.pb", "graph.002.pb", "graph.003.pb"],
frequency: int = 1,
):
graphs = [deepmd_pybind.DeepPot(tmp) for tmp in pb_file]
if file_type == "ase/traj":
atoms = IO.read(file_name, index=":")
nframes = len(atoms)
iterator = tqdm(range(0, nframes, 1))
devi = []
for iframe in iterator:
result = []
result_data = []
coordinate = atoms[iframe].get_positions().reshape([1, -1])[0]
cell = atoms[iframe].get_cell().reshape([1, -1])[0]
symbols = atoms[iframe].get_chemical_symbols()
atype = [type_dict[tmp] for tmp in symbols]
energies, forces, virials = [], [], []
for tmp in graphs:
e, f, v = tmp.compute(coordinate, atype, cell)
energies.append(e/atoms[iframe].get_global_number_of_atoms())
forces.append(np.array(f).reshape([-1, 3]))
virials.append(np.array(v)/atoms[iframe].get_global_number_of_atoms())
energies, forces, virials = np.array(energies), np.array(forces), np.array(virials)
#print(list(calculate_model_devi_e(energies)))
result.append(iframe*frequency)
result_data.extend(list(calculate_model_devi_v(virials)))
result_data.extend(list(calculate_model_devi_f(forces)))
result_data.extend([calculate_model_devi_e(energies),])
result_data = np.vstack(result_data).T
result.extend(result_data[0])
devi.append(result)
write_model_devi_out(devi, "model_devi.out")
class NeighborListFreud_numpy:
def __init__(self, box, rcut, cov_map, padding=True, max_shape=0):
if freud is None:
raise ImportError("Freud not installed.")
self.fbox = freud.box.Box.from_matrix(box)
self.rcut = rcut
self.capacity_multiplier = None
self.padding = padding
self.cov_map = cov_map
self.max_shape = max_shape
def _do_cov_map(self, pairs):
nbond = self.cov_map[pairs[:, 0], pairs[:, 1]]
pairs = np.concatenate([pairs, nbond[:, None]], axis=1)
return pairs
def allocate(self, coords, box=None):
self._positions = coords # cache it
fbox = freud.box.Box.from_matrix(box) if box is not None else self.fbox
aq = freud.locality.AABBQuery(fbox, coords)
res = aq.query(coords, dict(r_max=self.rcut, exclude_ii=True))
nlist = res.toNeighborList()
nlist = np.vstack((nlist[:, 0], nlist[:, 1])).T
nlist = nlist.astype(np.int32)
msk = (nlist[:, 0] - nlist[:, 1]) < 0
nlist = nlist[msk]
if self.capacity_multiplier is None:
if self.max_shape == 0:
self.capacity_multiplier = int(nlist.shape[0] * 1.5)
else:
self.capacity_multiplier = self.max_shape
if not self.padding:
self._pairs = self._do_cov_map(nlist)
return self._pairs
if self.max_shape == 0:
self.capacity_multiplier = max(self.capacity_multiplier, nlist.shape[0])
else:
self.capacity_multiplier = self.max_shape
padding_width = self.capacity_multiplier - nlist.shape[0]
if padding_width == 0:
self._pairs = self._do_cov_map(nlist)
return self._pairs
elif padding_width > 0:
padding = np.ones((self.capacity_multiplier - nlist.shape[0], 2), dtype=np.int32) * coords.shape[0]
nlist = np.vstack((nlist, padding))
self._pairs = self._do_cov_map(nlist)
return self._pairs
else:
raise ValueError("padding width < 0")
def update(self, positions, box=None):
self.allocate(positions, box)
@property
def pairs(self):
return self._pairs
@property
def scaled_pairs(self):
return self._pairs
@property
def positions(self):
return self._positions
def get_neighbor_list_numpy(box, rc, positions, natoms, padding=True, max_shape=0):
nbl = NeighborListFreud_numpy(box, rc, np.zeros([natoms, natoms], dtype=np.int32), padding=padding, max_shape=max_shape)
nbl.allocate(positions)
pairs = nbl.pairs
#pairs = pairs.at[:, :2].set(regularize_pairs(pairs[:, :2]))
return pairs
def determine_chi(
box,
positions: np.ndarray,
symbols: list,
mode: int=1, # 1= constant charge, 2=constant potential
most_upper_index: list=most_upper_Li_index,
most_bottum_index: list=most_bottum_Li_index,
bottum_external_chi: float=0.0,
upper_external_chi: float=0.0,
):
chi_0 = np.array([name2chi[tmp] for tmp in symbols])
if mode == 1:
return chi_0
elif mode == 2:
natoms = len(symbols)
coord_number = np.zeros(natoms)
chi_t = np.zeros(natoms)
pairs = get_neighbor_list_numpy(box, 3.5, positions, natoms, padding=False, max_shape=0)
for i, j, k in pairs:
if symbols[i] == "Li" and symbols[j] == "Li":
coord_number[i] += 1
coord_number[j] += 1
black_Li, green_Li = [], []
Li_bottum_index, Li_upper_index = [], []
Li_all_index = []
for iatom, symbol in enumerate(symbols):
if symbol == "Li":
y_coord = positions[iatom, 1]
if coord_number[iatom] >= 8.0:
if y_coord < box[1,1]/2:
chi_t[iatom] = bottum_external_chi
Li_bottum_index.append(iatom)
black_Li.append(iatom)
elif y_coord > box[1,1]/2:
chi_t[iatom] = upper_external_chi
Li_upper_index.append(iatom)
black_Li.append(iatom)
else:
green_Li.append(iatom)
for idx in most_bottum_index:
chi_t[idx] = bottum_external_chi
if idx not in Li_bottum_index:
Li_bottum_index.append(idx)
black_Li.append(idx)
for idx in most_upper_index:
chi_t[idx] = upper_external_chi
if idx not in Li_upper_index:
Li_upper_index.append(idx)
black_Li.append(idx)
with open("Li_bottum_index.txt", "a") as f:
f.write(" ".join(map(str, Li_bottum_index)))
f.write("\n")
with open("Li_upper_index.txt", "a") as f:
f.write(" ".join(map(str, Li_upper_index)))
f.write("\n")
return chi_0+chi_t, 0, 0
class NeighborListFreud:
def __init__(self, box, rcut, cov_map, padding=True, max_shape=0):
if freud is None:
raise ImportError("Freud not installed.")
self.fbox = freud.box.Box.from_matrix(box)
self.rcut = rcut
self.capacity_multiplier = None
self.padding = padding
self.cov_map = cov_map
self.max_shape = max_shape
def _do_cov_map(self, pairs):
nbond = self.cov_map[pairs[:, 0], pairs[:, 1]]
pairs = jnp.concatenate([pairs, nbond[:, None]], axis=1)
return pairs
def allocate(self, coords, box=None):
self._positions = coords # cache it
fbox = freud.box.Box.from_matrix(box) if box is not None else self.fbox
aq = freud.locality.AABBQuery(fbox, coords)
res = aq.query(coords, dict(r_max=self.rcut, exclude_ii=True))
nlist = res.toNeighborList()
nlist = np.vstack((nlist[:, 0], nlist[:, 1])).T
nlist = nlist.astype(np.int32)
msk = (nlist[:, 0] - nlist[:, 1]) < 0
nlist = nlist[msk]
if self.capacity_multiplier is None:
if self.max_shape == 0:
self.capacity_multiplier = int(nlist.shape[0] * 1.3)
else:
self.capacity_multiplier = self.max_shape
if not self.padding:
self._pairs = self._do_cov_map(nlist)
return self._pairs
if self.max_shape == 0:
self.capacity_multiplier = max(self.capacity_multiplier, nlist.shape[0])
else:
self.capacity_multiplier = self.max_shape
padding_width = self.capacity_multiplier - nlist.shape[0]
if padding_width == 0:
self._pairs = self._do_cov_map(nlist)
return self._pairs
elif padding_width > 0:
padding = np.ones((self.capacity_multiplier - nlist.shape[0], 2), dtype=np.int32) * coords.shape[0]
nlist = np.vstack((nlist, padding))
self._pairs = self._do_cov_map(nlist)
return self._pairs
else:
raise ValueError("padding width < 0")
def update(self, positions, box=None):
self.allocate(positions, box)
@property
def pairs(self):
return self._pairs
@property
def scaled_pairs(self):
return self._pairs
@property
def positions(self):
return self._positions
@jit
def ds_pairs(positions, box, pairs):
pos1 = positions[pairs[:,0].astype(int)]
pos2 = positions[pairs[:,1].astype(int)]
box_inv = jnp.linalg.inv(box)
dpos = pos1 - pos2
dpos = dpos.dot(box_inv)
dpos -= jnp.floor(dpos+0.5)
dr = dpos.dot(box)
ds = jnp.linalg.norm(dr,axis=1)
return ds
def typemap_list_to_symbols(atom_numbs: list, atom_names: list):
atomic_symbols = []
idx = 0
for numb in atom_numbs:
atomic_symbols.extend((atom_names[idx], )*numb)
idx += 1
return atomic_symbols
def generate_get_energy(kappa, K1, K2, K3):
pme_recip_fn = generate_pme_recip(
Ck_fn=Ck_1,
kappa=kappa / 10,
gamma=False,
pme_order=6,
K1=K1,
K2=K2,
K3=K3,
lmax=0,
)
def get_energy_kernel(positions, box, pairs, charges, mscales):
atomCharges = charges
atomChargesT = jnp.reshape(atomCharges, (-1, 1))
return energy_pme(
positions * 10,
box * 10,
pairs,
atomChargesT,
None,
None,
None,
mscales,
None,
None,
None,
pme_recip_fn,
kappa / 10,
K1,
K2,
K3,
0,
False,
)
def get_energy(positions, box, pairs, charges, mscales):
return get_energy_kernel(positions, box, pairs, charges, mscales)
return get_energy
@jit
def get_Energy_Qeq_2(charges, positions, box, pairs, eta, chi, hardness):
@jit
def get_Energy_PME():
pme = generate_get_energy(4.3804348, 45, 123, 22)
e = pme(positions/10, box/10, pairs, charges, mscales=jnp.array([1., 1., 1., 1., 1., 1.]))
return e
@jit
def get_Energy_Correction():
ds = ds_pairs(positions, box, pairs)
buffer_scales = pair_buffer_scales(pairs)
e_corr_pair = charges[pairs[:,0]] * charges[pairs[:,1]] * erfc(ds / (jnp.sqrt(2) * jnp.sqrt(eta[pairs[:,0]]**2 + eta[pairs[:,1]]**2))) * 1389.35455846 / ds * buffer_scales
e_corr_self = charges * charges * 1389.35455846 /(2*jnp.sqrt(jnp.pi) * eta)
return -jnp.sum(e_corr_pair) + jnp.sum(e_corr_self)
@jit
def get_Energy_Onsite():
E_tf = (chi * charges + 0.5 * hardness * charges *charges) * 96.4869
#E_tf = 0.5 * hardness * charges *charges * 96.4869
return jnp.sum(E_tf)
@jit
def get_dipole_correction():
V = jnp.linalg.det(box)
pre_corr = 2 * jnp.pi / V * 1389.35455846
Mz = jnp.sum(charges * positions[:, 1])
e_corr = pre_corr * Mz**2
return jnp.sum(e_corr)
return (get_Energy_PME() + get_Energy_Correction() + get_Energy_Onsite() + get_dipole_correction()) / 96.4869
def fn_value_and_proj_grad(func, constraint_matrix, has_aux=False):
def value_and_proj_grad(*arg, **kwargs):
value, grad = jax.value_and_grad(func, has_aux=has_aux)(*arg, **kwargs)
# n * 1
a = jnp.matmul(constraint_matrix, grad.reshape(-1, 1))
# n * 1
b = jnp.sum(constraint_matrix * constraint_matrix, axis=1, keepdims=True)
# 1 * N
delta_grad = jnp.matmul((a / b).T, constraint_matrix)
# N
proj_grad = grad - delta_grad.reshape(-1)
return value, proj_grad
return value_and_proj_grad
@jit
def solve_q_pg(charges, positions, box, pairs, eta, chi, hardness):
func = fn_value_and_proj_grad(get_Energy_Qeq_2, jnp.ones_like(charges).reshape(1, -1))
solver = jaxopt.LBFGS(
fun=func,
value_and_grad=True,
tol=1e-2,
)
res = solver.run(charges, positions, box, pairs, eta, chi, hardness)
x_opt = res.params
return x_opt
@jit
def get_force(charges, positions, box, pairs, eta, chi, hardness):
energy,force = value_and_grad(get_Energy_Qeq_2,argnums=(1))(charges, positions, box, pairs, eta, chi, hardness)
return energy, -force
def get_qeq_energy_and_force_pg(charges, positions, box, pairs, eta, chi, hardness):
q = solve_q_pg(charges, positions, box, pairs, eta, chi, hardness)
energy, force = get_force(q, positions, box, pairs, eta, chi, hardness)
return energy, force, q
def get_neighbor_list(box, rc, positions, natoms, padding=True, max_shape=0):
nbl = NeighborListFreud(box, rc, jnp.zeros([natoms, natoms], dtype=jnp.int32), padding=padding, max_shape=max_shape)
nbl.allocate(positions)
pairs = nbl.pairs
pairs = pairs.at[:, :2].set(regularize_pairs(pairs[:, :2]))
return pairs
if TYPE_CHECKING:
from ase import Atoms
__all__ = ["QEQ"]
name2eta = {
"Li":10.0241,
"C":7.0000,
"H":7.4366,
"O":8.9989,
"P":7.0946,
"F":8.0000,
}
name2chi = {
"Li":-3.0000,
"C":5.8678,
"H":5.3200,
"O":8.5000,
"P":1.8000,
"F":9.0000,
}
name2index = {
"H": 1,
"He": 2,
"Li": 3,
"Be": 4,
"B": 5,
"C": 6,
"N": 7,
"O": 8,
"F": 9,
"Ne": 10,
"Na": 11,
"Mg": 12,
"Al": 13,
"Si": 14,
"P": 15,
"S": 16,
"Cl": 17,
"Ar": 18,
"K": 19,
"Ca": 20,
"Sc": 21,
"Ti": 22,
"V": 23,
"Cr": 24,
"Mn": 25,
"Fe": 26,
"Co": 27,
"Ni": 28,
"Cu": 29,
"Zn": 30,
"Ga": 31,
"Ge": 32,
"As": 33,
"Se": 34,
"Br": 35,
"Kr": 36,
"Rb": 37,
"Sr": 38,
"Y": 39,
"Zr": 40,
"Nb": 41,
"Mo": 42,
"Tc": 43,
"Ru": 44,
"Rh": 45,
"Pd": 46,
"Ag": 47,
"Cd": 48,
"In": 49,
"Sn": 50,
"Sb": 51,
"Te": 52,
"I": 53,
"Xe": 54,
"Cs": 55,
"Ba": 56,
"La": 57,
"Ce": 58,
"Pr": 59,
"Nd": 60,
"Pm": 61,
"Sm": 62,
"Eu": 63,
"Gd": 64,
"Tb": 65,
"Dy": 66,
"Ho": 67,
"Er": 68,
"Tm": 69,
"Yb": 70,
"Lu": 71,
"Hf": 72,
"Ta": 73,
"W": 74,
"Re": 75,
"Os": 76,
"Ir": 77,
"Pt": 78,
"Au": 79,
"Hg": 80,
"Tl": 81,
"Pb": 82,
"Bi": 83,
"Po": 84,
"At": 85,
"Rn": 86,
"Fr": 87,
"Ra": 88,
"Ac": 89,
"Th": 90,
"Pa": 91,
"U": 92,
"Np": 93,
"Pu": 94,
"Am": 95,
"Cm": 96,
"Bk": 97,
"Cf": 98,
"Es": 99,
"Fm": 100,
"Md": 101,
"No": 102,
"Lr": 103,
"Rf": 104,
"Db": 105,
"Sg": 106,
"Bh": 107,
"Hs": 108,
"Mt": 109,
"Ds": 110,
"Rg": 111,
"Cn": 112,
"Uut": 113,
"Uuq": 114,
"Uup": 115,
"Uuh": 116,
"Uus": 117,
"Uuo": 118,
}
R_Covalence = (
2.0, # ghost?
0.31, #H
0.28, #He
1.28, #Li
0.96, #Be
0.84, #B
0.76, #C
0.71, #N
0.66, #O
0.57, #F
0.58, #Ne
1.66, #Na
1.41, #Mg
1.21, #Al
1.11, #Si
1.07, #P
1.05, #S
1.02, #Cl
1.06, #Ar
2.03, #K
1.76, #Ca
1.70, #Sc
1.60, #Ti
1.53, #V
1.39, #Cr
1.61, #Mn
1.52, #Fe
1.50, #Co
1.24, #Ni
1.32, #Cu
1.22, #Zn
1.22, #Ga
1.20, #Ge
1.19, #As
1.20, #Se
1.20, #Br
1.16, #Kr
2.20, #Rb
1.95, #Sr
1.90, #Y
1.75, #Zr
1.64, #Nb
1.54, #Mo
1.47, #Tc
1.46, #Ru
1.42, #Rh
1.39, #Pd
1.45, #Ag
1.44, #Cd
1.42, #In
1.39, #Sn
1.39, #Sb
1.38, #Te
1.39, #I
1.40, #Xe
2.44, #Cs
2.15, #Ba
2.07, #La
2.04, #Ce
2.03, #Pr
2.01, #Nd
1.99, #Pm
1.98, #Sm
1.98, #Eu
1.96, #Gd
1.94, #Tb
1.92, #Dy
1.92, #Ho
1.89, #Er
1.90, #Tm
1.87, #Yb
1.87, #Lu
1.75, #Hf
1.70, #Ta
1.62, #W
1.51, #Re
1.44, #Os
1.41, #Ir
1.36, #Pt
1.36, #Au
1.32, #Hg
1.45, #Tl
1.46, #Pb
1.48, #Bi
1.40, #Po
1.50, #At
1.50, #Rn
2.60, #Fr
2.21, #Ra
2.15, #Ac
2.06, #Th
2.00, #Pa
1.96, #U
1.90, #Np
1.87, #Pu
1.80, #Am
1.69 #Cm
)
def cell_to_box(a, b, c, alpha, beta, gamma):
alpha = alpha / 180 * np.pi
beta = beta / 180 * np.pi
gamma = gamma / 180 * np.pi
box = np.zeros((3,3), dtype=np.double)
box[0, 0] = a
box[0, 1] = 0
box[0, 2] = 0
box[1, 0] = b * np.cos(gamma)
box[1, 1] = b * np.sin(gamma)
box[1, 2] = 0
box[2, 0] = c * np.cos(beta)
box[2, 1] = c * (np.cos(alpha)-np.cos(beta)*np.cos(gamma)) / np.sin(gamma)
box[2, 2] = c * np.sqrt(1 - np.cos(beta)**2 - ((np.cos(alpha)-np.cos(beta)*np.cos(gamma))/np.sin(gamma))**2)
return box
def apply_wall_2(positions, coord, epsilon, sigma, cutoff, dim, side, index):
coeff1 = 48.0 * epsilon * sigma**12
coeff2 = 24.0 * epsilon * sigma**6
natoms = positions.shape[0]
forces = np.zeros_like(positions)
for idx in index:
if side < 0:
delta = positions[idx, dim] - coord
else:
delta = coord - positions[idx, dim]
if delta > cutoff:
continue
rinv = 1.0/delta
r2inv = rinv*rinv
r6inv = r2inv*r2inv*r2inv
fwall = side * r6inv*(coeff1*r6inv - coeff2) * rinv
forces[idx, dim] = fwall
return forces
class DPQEQ(Calculator):
name = "DPQEQ"
implemented_properties = ["energy", "forces"]
def __init__(self,
model: Union[str, "Path"],
label: str = "DPQEQ",
pairs_max_shape: int=0,
type_map: Optional[Dict[str, int]] = None,
mode: int = 0, # DPQEQ, 1=only DP, 2=only qeq
const_potential: bool = True, # constant charge
voltage: float = 0.0, # constant potential voltage
**kwargs
) -> None:
Calculator.__init__(self, label=label, **kwargs)
#self.dp = DeepPotential(str(Path(model).resolve()))
self.dp = deepmd_pybind.DeepPot(str(Path(model).resolve()))
self.pairs_max_shape = pairs_max_shape
self.mode = mode
self.const_potential = const_potential
self.voltage = voltage
self.type_map = type_map
def calculate(
self,
atoms: Optional["Atoms"] = None,
properties: List[str] = ["energy", "forces"],
system_changes: List[str] = all_changes,
):
if atoms is not None:
self.atoms = atoms.copy()
positions = jnp.array(self.atoms.get_positions())
cell = self.atoms.get_cell_lengths_and_angles()
box = jnp.array(cell_to_box(cell[0], cell[1], cell[2], cell[3], cell[4], cell[5]))
symbols = self.atoms.get_chemical_symbols()
charges = jnp.array(np.random.random(len(symbols)))
if self.const_potential is False:
chi = jnp.array([name2chi[tmp] for tmp in symbols])
else:
chi, z0, z1 = determine_chi(np.array(box), np.array(positions), symbols, 2, most_upper_Li_index, most_bottum_Li_index, bottum_external_chi=6.0, upper_external_chi=-2.0)
hardness = jnp.array([name2eta[tmp] for tmp in symbols])
eta = jnp.array([R_Covalence[name2index[tmp]] for tmp in symbols])
natoms = self.atoms.get_global_number_of_atoms()
qeq_counter = int(np.sum(qeq_counter_list))
coord = self.atoms.get_positions().reshape([1, -1])[0]
symbols = self.atoms.get_chemical_symbols()
cell = self.atoms.get_cell().reshape([1, -1])[0]
atype = [self.type_map[tmp] for tmp in symbols]
time1 = time.process_time()
e, f, v = self.dp.compute(coord, atype, cell) # dp cpp api infer for effeciency
time2 = time.process_time()
print("DP infer costs time: %.3f"%(time2-time1))
if self.mode == 0:
if qeq_counter%3 != 0:
energy = qeq_energy[-1]
force = qeq_force[-1]
else:
time1 = time.process_time()
pairs = get_neighbor_list(box, 6, positions, natoms, padding=True, max_shape=self.pairs_max_shape)
charge = initial_charge_guess_list[-1]
energy, force, charge = get_qeq_energy_and_force_pg(charge, positions, box, pairs, eta, chi, hardness)
initial_charge_guess_list.append(charge)
del(initial_charge_guess_list[0])
qeq_charges.append(charge)
qeq_energy.append(energy)
qeq_force.append(force)
time2 = time.process_time()
print("QEq calculation costs time: %.3f"%(time2-time1))
force_1 = apply_wall_2(atoms.get_positions(), 15.50, 0.025, 2.451, 2.5, 1, 1, electrolyte_index)
force_2 = apply_wall_2(atoms.get_positions(), 74.00, 0.025, 2.451, 2.5, 1, -1, electrolyte_index)
self.results["energy"] = np.array(energy) + e
self.results["forces"] = np.array(force).reshape(-1, 3) + np.array(f).reshape(-1, 3) - force_1 - force_2
qeq_counter_list.append(1)
def parse_lammps_input(file_name="input.lammps"):
with open(file_name, 'r') as f:
lines = [line.rstrip() for line in f.readlines()]
for line in lines:
if line.startswith("variable NSTEPS"):
nstep = float(line.split()[-1])
elif line.startswith("variable TEMP"):
temp = float(line.split()[-1])
elif line.startswith("variable DUMP_FREQ"):
dump_freq = int(line.split()[-1])
elif line.startswith("timestep"):
dt = float(line.split()[-1])
return nstep, temp, dump_freq, dt
np.random.seed(2333)
def run_md_ase(input_file, potential_file, temp, dt, step, dump_freq):
atoms = IO.read(input_file)
calc2 = DPQEQ(model=potential_file, pairs_max_shape=200000, type_map={"Li":0, "C":1, "H":2, "O":3, "P":4, "F":5}, mode=0, const_potential=False, voltage=-12)
atoms.calc = calc2
constraint = FixAtoms(indices=fix_Li_bottum+fix_Li_upper)
atoms.set_constraint([constraint,])
T = temp
MaxwellBoltzmannDistribution(atoms, temperature_K=T)
md = NPT(atoms, timestep=dt*1000*units.fs, temperature_K=T, ttime = 20*units.fs, pfactor = None)
traj = Trajectory('md.traj', 'w', atoms)
md.attach(MDLogger(md, atoms, 'md.log', header=True, stress=False, mode='w'), interval=dump_freq)
md.attach(traj.write, interval=dump_freq)
time1 = time.process_time()
md.run(int(step))
time2 = time.process_time()
print("it costs: %.5f s"%(time2 - time1))
def traj_wrap():
trajectory = IO.read('md.traj', index=':')
for atoms in trajectory:
atoms.wrap()
IO.write('wrapped_trajectory.traj', trajectory)
def convert_traj_to_lmp(frequency=1):
total_atoms = IO.read("wrapped_trajectory.traj", index=":")
nframes = len(total_atoms)
for iframe in range(nframes):
total_atoms[iframe].write("traj/%d.lammpstrj"%(iframe*frequency), format="lammps-data", specorder=["Li", "C", "H", "O", "P", "F"])
def get_qeq_charge_for_md_traj(file_name="wrapped_trajectory.traj", frequency=1):
atoms = IO.read(file_name, index=":")
nframes = len(atoms)
iterator = tqdm(range(0, nframes, frequency))
qeq_charges = []
for iframe in iterator:
coordinate = atoms[iframe].get_positions()
cell_tmp = atoms[iframe].get_cell_lengths_and_angles()
box = cell_to_box(cell_tmp[0], cell_tmp[1], cell_tmp[2], cell_tmp[3], cell_tmp[4], cell_tmp[5])
symbols = atoms[iframe].get_chemical_symbols()
eta = jnp.array([R_Covalence[name2index[tmp]] for tmp in symbols])
chi = jnp.array([name2chi[tmp] for tmp in symbols])
hardness = jnp.array([name2eta[tmp] for tmp in symbols])
charge = initial_charge_guess_list[-1]
pairs = get_neighbor_list(box, 6, coordinate, len(coordinate), padding=True, max_shape=200000)
energy, force, charge = get_qeq_energy_and_force_pg(charge, coordinate, box, pairs, eta, chi, hardness)
qeq_charges.append(charge)
initial_charge_guess_list.append(charge)
del(initial_charge_guess_list[0])
np.savetxt("qeq_charges", np.reshape(qeq_charges, [-1, 3070]), fmt="%.10f")
# everything are prepared, now run md simulations
# parse lammps input file
#nstep, temp, dump_freq, dt = parse_lammps_input()
# run MD
#run_md_ase("POSCAR", "graph.000.pb", temp, dt, nstep, dump_freq)
# traj convert
#traj_wrap()
# calculate model devi
#calculate_model_devi_cpp(frequency=dump_freq)
# export traj/*.lammpstrj
#convert_traj_to_lmp(frequency=dump_freq)
# save qeq charges for analysis
#np.savetxt("qeq_charges", np.array(qeq_charges)[::dump_freq, :], fmt="%.4f")
get_qeq_charge_for_md_traj(frequency=1)