-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAnomalies_Figure_sesoanl_sst.ncl
194 lines (145 loc) · 7.82 KB
/
Anomalies_Figure_sesoanl_sst.ncl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
begin
;load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
;load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"
;load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/contributed.ncl"
; uq_his=hus_his*ua_his
; uq_rcp=hus_rcp*ua_rcp
; vq_his=hus_his*va_his
; vq_rcp=hus_rcp*va_rcp
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;; Nat-Hist;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
months = (/"Jan.","Feb.","Mar.","Apr.","May","Jun.","Jul.","Aug.","Sept.","Oct.","Nov.","Dec."/)
file_precip_0 = addfile("total_precipitation.nc","r")
lat = file_precip_0->latitude(400:900)
lon = file_precip_0->longitude(600:1800)
dat = file_precip_0->tp(time|:, latitude|400:900,longitude|600:1800)
d = getvardims(file_precip_0)
; print(d)
file_precip_0 = addfile("SST.nc","r")
sst = file_precip_0->sst(time|0:503, expver|0, latitude|:,longitude|:)
dimice=dimsizes(dat)
ntim2=dimice(0)
nlat2=dimice(1)
mlon2=dimice(2)
;====================================
; Calculate the JFM Clim.
;====================================
temp := dat(latitude|:,longitude|:,time|:)
temp!0 = "lat"
temp!1 = "lon"
temp!2 = "time"
;=====================================================================
; Calculate and Remove the Long-Term Monthly Means, + compute JFM Avg.
;=====================================================================
tp_clm = clmMonLLT (short2flt(temp)) ;Calculate LTMM's
tp_anomalies = calcMonAnomLLT(short2flt(temp),tp_clm) ;Calculate Anomalies from Means
tp_anomalies = tp_anomalies * 1000 * 30
; region_mean = dim_avg (tp_clm)
temp := sst(latitude|:,longitude|:,time|:)
temp!0 = "lat"
temp!1 = "lon"
temp!2 = "time"
sst_clm = clmMonLLT (short2flt(temp)) ;Calculate LTMM's
sst_anomalies = calcMonAnomLLT(short2flt(temp),sst_clm) ;Calculate Anomalies from Means
; region_mean = dim_avg (tp_clm)
; #####################################################################
; #################### seasonal precipitation and sst #################
; #####################################################################
tp1 = tp_anomalies(time|:, lat|:, lon|: )
; precip_DJF = month_to_season (tp1, "DJF")
precip_MAM = month_to_season (tp1, "MAM")
precip_JJA = month_to_season (tp1 , "JJA")
; precip_SON = month_to_season (tp1 , "SON")
sst1 = sst_anomalies(time|:, lat|:, lon|: )
sst_DJF = month_to_season ( sst1, "JJA")
; sst_MAM = month_to_season ( sst1, "MAM")
; sst_JJA = month_to_season ( sst1, "JJA")
; sst_SON = month_to_season ( sst1, "MAM")
;; study region of south china lat: 20:28 (220:300) & lon: 110:121(500:610)
precip_south_china_MAM = precip_MAM (lat|220:300, lon|500:610, time|:)
region_mean_anomalies_MAM = dim_avg_n(precip_south_china_MAM, (/0,1/) )
precip_sst_reg_MAM = regCoef(region_mean_anomalies_MAM, sst_DJF (lat|:, lon|:, time|2:41 ) )
tval = onedtond(precip_sst_reg_MAM@tval , dimsizes(precip_sst_reg_MAM) )
df = onedtond(precip_sst_reg_MAM@nptxy, dimsizes(precip_sst_reg_MAM)) - 2
b = tval ; b must be same size as tval (and df)
b = 0.5
prob_MAM = betainc(df/(df+tval^2),df/2.0,b) ; prob(nlat,nlon)
copy_VarCoords(sst_DJF(lat|:, lon|:, time|0 ), prob_MAM )
precip_sst_reg_MAM = precip_sst_reg_MAM *100
copy_VarCoords(sst_DJF(lat|:, lon|:, time|0 ), precip_sst_reg_MAM )
precip_south_china_JJA = precip_JJA (lat|220:300, lon|500:610, time|:)
region_mean_anomalies_JJA = dim_avg_n(precip_south_china_JJA, (/0,1/) )
precip_sst_reg_JJA = regCoef(region_mean_anomalies_JJA, sst_DJF(lat|:, lon|:, time|2:41 ) )
tval = onedtond(precip_sst_reg_JJA@tval , dimsizes(precip_sst_reg_JJA) )
df = onedtond(precip_sst_reg_JJA@nptxy, dimsizes(precip_sst_reg_JJA)) - 2
b = tval ; b must be same size as tval (and df)
b = 0.5
prob_JJA = betainc(df/(df+tval^2),df/2.0,b) ; prob(nlat,nlon)
copy_VarCoords(sst_DJF(lat|:, lon|:, time|0 ), prob_JJA )
precip_sst_reg_JJA = precip_sst_reg_JJA *100
copy_VarCoords( sst_DJF(lat|:, lon|:, time|0 ), precip_sst_reg_JJA )
;*******************************************************************
; create plot for total preciptation and wind_850hpa anomalies
;*******************************************************************
res = True ; plot mods desired
res@gsnDraw = False
res@gsnFrame = False
; res@mpProjection = "CylindricalEqualArea"; choose projection
res@mpFillOn = False ; turn off map fill
res@cnFillOn = True ; turn on color
res@cnLinesOn = False ; turn off contour lines
res@cnFillPalette = "GMT_polar" ; set color map
res@cnLevelSelectionMode = "ManualLevels" ; set manual contour levels
res@cnMinLevelValF = -1.5 ; set min contour level
res@cnMaxLevelValF = 1.5 ; set max contour level
res@cnLevelSpacingF = 0.5 ; set contour spacing
res@gsnAddCyclic = False ; regional plot
; res@mpMinLatF = 20 ; min lat to mask
; res@mpMaxLatF = 80 ; max lat to mask
; res@mpMinLonF = -90 ; min lon to mask
; res@mpMaxLonF = 40 ; max lon to mask
; res@mpMaxLatF = max(lat) ; choose subregion
; res@mpMinLatF = min(lat)
res@mpMaxLonF = 360.
res@mpMinLonF = 0.
res@mpCenterLonF = 180. ; This is necessary to get the correct map
res@gsnDraw = False
res@cnMinLevelValF = -0.8 ; set min contour level
res@cnMaxLevelValF = 0.8 ; set max contour level
res@cnLevelSpacingF = 0.2 ; set contour spacing
res@gsnAddCyclic = False ; regional plot
opt = True
opt@gsnShadeFillType = "pattern"
opt@gsnShadeHigh = 17
res2 = True ; res2 probability plots
res2@gsnDraw = False ; Do not draw plot
res2@gsnFrame = False ; Do not advance frome
res2@cnInfoLabelOn = False ; turn off info label
res2@cnLinesOn = False ; do not draw contour lines
res2@cnLineLabelsOn = False ; do not draw contour labels
res2@cnFillScaleF = 0.6 ; add extra density
plot = new(2, graphic)
wks1 = gsn_open_wks("pdf","precip_seasonal_sst_regression") ; send graphics to PNG file
gsn_define_colormap(wks1, "GMT_polar")
; gsn_reverse_colormap(wks1)
plot(0) = gsn_csm_contour_map(wks1, precip_sst_reg_MAM , res ) ; draw second plot
plot11 = gsn_csm_contour_map(wks1, prob_MAM , res2 ) ; draw second plot
plot11 = gsn_contour_shade(plot11, 0.05, 1, opt) ; shade all areas less than the 0.05 contour level
overlay (plot(0), plot11)
; wks2 = gsn_open_wks("pdf","precip_seasonal_sst_regression_lag3") ; send graphics to PNG file
; gsn_define_colormap(wks2, "GMT_polar")
; gsn_reverse_colormap(wks1)
plot(1) = gsn_csm_contour_map(wks1, precip_sst_reg_JJA , res ) ; draw second plot
plot22 = gsn_csm_contour_map(wks1, prob_JJA , res2 ) ; draw second plot
plot22 = gsn_contour_shade(plot22, 0.05, 1, opt) ; shade all areas less than the 0.05 contour level
overlay (plot(1), plot22)
resP = True
resP@gsnPanelLabelBar = True
resP@lbAutoManage = False
resP@lbLabelFontHeightF = 0.0075
gsn_panel(wks1,plot,(/2,1/),resP)
;*********************************************************************
; create plot for integrated moisture flux and omega_500hpa anomalies
;*********************************************************************
end;