diff --git a/vignettes/sparse.Rmd b/vignettes/sparse.Rmd index 176dec6..1e47d65 100644 --- a/vignettes/sparse.Rmd +++ b/vignettes/sparse.Rmd @@ -8,80 +8,72 @@ knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) +options(width=120) ``` +In this vignette, we compare the computation time/memory usage of +dense `matrix` and sparse `Matrix`. We begin with an analysis of the +time/memory it takes to create these objects, along with a `vector` +for comparison: + ```{r} +library(Matrix) +len <- function(x)data.frame(length=length(x)) vec.mat.result <- atime::atime( - N=10^seq(1,7,by=0.5), - vector=numeric(N), - matrix=matrix(0, N, N), - Matrix=Matrix(0, N, N)) -vec.mat.best <- atime::references_best(vec.mat.result) -plot(vec.mat.best) + N=10^seq(1,7,by=0.25), + vector=len(numeric(N)), + matrix=len(matrix(0, N, N)), + Matrix=len(Matrix(0, N, N)), + result=TRUE) +plot(vec.mat.result) ``` -The plot above shows that ICU/PCRE/TRE are all exponential in N -(subject/pattern size) when the pattern contains backreferences. +The plot above shows three panels, one for each unit. + +* `kilobytes` is the amount of memory used. We see that `Matrix` and + `vector` use the same amount of memory asymptotically, whereas + `matrix` uses more (larger slope on the log-log plot implies larger + asymptotic complexity class). +* `length` is the value returned by the `length` function. We see that + `matrix` and `Matrix` have the same value, whereas `vector` has + asymptotically smaller length (smaller slope on log-log plot). +* `seconds` is the amount of time taken. We see that `Matrix` is + slower than `vector` and `matrix` by a small constant overhead, + which can be seen for small `N`. We also see that for large `N`, + `Matrix` and `vector` have the same asymptotic time complexity, + which is much faster than `matrix`. + +Below we estimate the best asymptotic complexity classes: ```{r} -all.exprs <- c( - if(requireNamespace("re2"))atime::atime_grid( - RE2=re2::re2_match(subject, pattern)), - backtrackers) -all.result <- atime::atime( - N=subject.size.vec, - setup={ - subject <- paste(rep("a", N), collapse="") - pattern <- paste(rep(c("a?", "a"), each=N), collapse="") - }, - expr.list=all.exprs) -all.best <- atime::references_best(all.result) -plot(all.best) +vec.mat.best <- atime::references_best(vec.mat.result) +plot(vec.mat.best) ``` -The plot above shows that ICU/PCRE are exponential time whereas -RE2/TRE are polynomial time. Exercise for the reader: modify the above -code to use the `seconds.limit` argument so that you can see what -happens to ICU/PCRE for larger N (hint: you should see a difference at -larger sizes). +The plot above shows that -## Interpolate at seconds.limit using predict method +* `matrix` has time, memory, and `length` which are all quadratic `O(N^2)`. +* `Matrix` has linear `O(N)` time and memory, but `O(N^2)` values for + `length`. +* `vector` has time, memory, and `length` which are all linear `O(N)`. -```{r} -(all.pred <- predict(all.best)) -summary(all.pred) -``` - -The `predict` method above returns a list with a new element named -`prediction`, which shows the data sizes that can be computed with a -given time budget. The `plot` method is used below, +Below we estimate the throughput for some given limits: ```{r} -plot(all.pred) +vec.mat.pred <- predict(vec.mat.best, seconds=vec.mat.result$seconds.limit, kilobytes=1000, length=1e6) +plot(vec.mat.pred) ``` -## `atime_grid` to compare different engines - -In the `nc` package there is an `engine` argument which controls which -C regex library is used: +In the plot above we can see the throughput `N` for a given limit of +`kilobytes`, `length` or `seconds`. Below we use `Matrix` as a +reference, and compute the throughput ratio, `Matrix` to other. ```{r} -nc.exprs <- atime::atime_grid( - list(ENGINE=c( - if(requireNamespace("re2"))"RE2", - "PCRE", - if(requireNamespace("stringi"))"ICU")), - nc=nc::capture_first_vec(subject, pattern, engine=ENGINE)) -nc.result <- atime::atime( - N=subject.size.vec, - setup={ - rep.collapse <- function(chr)paste(rep(chr, N), collapse="") - subject <- rep.collapse("a") - pattern <- list(maybe=rep.collapse("a?"), rep.collapse("a")) - }, - expr.list=nc.exprs) -nc.best <- atime::references_best(nc.result) -plot(nc.best) +library(data.table) +dcast(vec.mat.pred$prediction[ +, ratio := N[expr.name=="Matrix"]/N, by=unit +], unit + unit.value ~ expr.name, value.var="ratio") ``` -The result/plot above is consistent with the previous result. +From the table above (`matrix` column), we can see that the throughput +of `Matrix` is 100-1000x larger than `matrix`, for the given limits.