Public interface for TensorFlow GNN package.
All the public symbols, data types and functions are provided from this top-level package. To use the library, you should use a single import statement, like this:
import tensorflow_gnn as tfgnn
experimental
module: Experimental (unstable) parts
of the public interface of TensorFlow GNN.
keras
module: The tfgnn.keras package.
proto
module: The protocol message (protobuf) types
defined by TensorFlow GNN.
sampler
module: Public interface for GNN Sampler.
class Adjacency
: Stores how edges connect pairs of nodes from source and target node sets.
class AdjacencySpec
: A type spec for tfgnn.Adjacency
.
class Context
: A composite tensor for graph context features.
class ContextSpec
: A type spec for tfgnn.Context
.
class EdgeSet
: A composite tensor for edge set features, size and adjacency information.
class EdgeSetSpec
: A type spec for tfgnn.EdgeSet
.
class Feature
: The schema entry for a single
feature.
class FeatureDefaultValues
: Default values for graph context, node sets and edge sets features.
class GraphSchema
: The top-level container for
the schema of a graph dataset.
class GraphTensor
: A composite tensor for heterogeneous directed graphs with features.
class GraphTensorSpec
: A type spec for tfgnn.GraphTensor
.
class HyperAdjacency
: Stores how (hyper-)edges connect tuples of nodes from incident node sets.
class HyperAdjacencySpec
: A type spec for tfgnn.HyperAdjacency
.
class NodeSet
: A composite tensor for node set features plus size information.
class NodeSetSpec
: A type spec for tfgnn.NodeSet
.
class SizeConstraints
: Constraints on the number of entities in the graph.
class ValidationError
: A schema validation error.
add_readout_from_first_node(...)
:
Adds a readout structure equivalent to
tfgnn.gather_first_node()
.
add_self_loops(...)
: Adds self-loops for
edge_set_name
EVEN if they already exist.
assert_constraints(...)
: Validate the shape constaints of a graph's features at runtime.
assert_satisfies_size_constraints(...)
: Raises InvalidArgumentError if graph_tensor exceeds size_constraints.
assert_satisfies_total_sizes(...)
: Raises InvalidArgumentError if graph_tensor exceeds size_constraints.
broadcast(...)
: Broadcasts values from nodes to edges,
or from context to nodes or edges.
broadcast_context_to_edges(...)
: Broadcasts a context value to the edge_set
edges.
broadcast_context_to_nodes(...)
: Broadcasts a context value to the node_set
nodes.
broadcast_node_to_edges(...)
: Broadcasts values from nodes to incident edges.
check_compatible_with_schema_pb(...)
:
Checks that the given spec or value is compatible with the graph schema.
check_homogeneous_graph_tensor(...)
:
Raises ValueError when tfgnn.get_homogeneous_node_and_edge_set_name() does.
check_required_features(...)
: Checks the requirements of a given schema against another.
check_scalar_graph_tensor(...)
: Checks
that graph tensor is scalar (has rank 0).
combine_values(...)
: Combines a list of tensors into one (by concatenation or otherwise).
convert_to_line_graph(...)
: Obtain a
graph's line graph.
create_graph_spec_from_schema_pb(...)
: Converts a graph schema proto message to a scalar GraphTensorSpec.
create_schema_pb_from_graph_spec(...)
:
Converts scalar GraphTensorSpec to a graph schema proto message.
dataset_filter_with_summary(...)
: Dataset filter with a summary for the fraction of dataset elements removed.
dataset_from_generator(...)
: Creates
dataset from generator of any nest of scalar graph pieces.
disable_graph_tensor_validation(...)
:
Disables both static and runtime checks of graph tensors.
disable_graph_tensor_validation_at_runtime(...)
:
Disables runtime checks (tf.debugging.Assert
) of graph tensors.
enable_graph_tensor_validation(...)
:
Enables static checks of graph tensors.
enable_graph_tensor_validation_at_runtime(...)
:
Enables both static and runtime checks of graph tensors.
find_tight_size_constraints(...)
: Returns smallest possible size constraints that allow dataset padding.
gather_first_node(...)
: Gathers feature value from the first node of each graph component.
get_aux_type_prefix(...)
: Returns type
prefix of aux node or edge set names, or None
if non-aux.
get_homogeneous_node_and_edge_set_name(...)
:
Returns the sole node_set_name, edge_set_name
or raises ValueError
.
get_io_spec(...)
: Returns tf.io parsing features for GraphTensorSpec
type spec.
get_registered_reduce_operation_names(...)
: Returns the registered list of supported reduce operation names.
graph_tensor_to_values(...)
: Convert an eager GraphTensor
to a mapping of mappings of PODTs.
homogeneous(...)
: Constructs a homogeneous
GraphTensor
with node features and one edge_set.
is_dense_tensor(...)
: Returns whether a tensor
(TF or Keras) is a Tensor.
is_graph_tensor(...)
: Returns whether value
is a GraphTensor (possibly wrapped for Keras).
is_ragged_tensor(...)
: Returns whether a tensor
(TF or Keras) is a RaggedTensor.
iter_features(...)
: Utility function to iterate over the features of a graph schema.
iter_sets(...)
: Utility function to iterate over all the sets present in a graph schema.
learn_fit_or_skip_size_constraints(...)
: Learns the optimal size constraints for the fixed size batching with retry.
mask_edges(...)
: Creates a GraphTensor after applying
edge_mask over the specified edge-set.
node_degree(...)
: Returns the degree of each node
w.r.t. one side of an edge set.
pad_to_total_sizes(...)
: Pads graph tensor to the total sizes by inserting fake graph components.
parse_example(...)
: Parses a batch of serialized Example protos into a single GraphTensor
.
parse_schema(...)
: Parse a schema from text-formatted protos.
parse_single_example(...)
: Parses a single serialized Example proto into a single GraphTensor
.
pool(...)
: Pools values from edges to nodes, or from nodes
or edges to context.
pool_edges_to_context(...)
: Aggregates (pools) edge values to graph context.
pool_edges_to_node(...)
: Aggregates (pools) edge values to incident nodes.
pool_neighbors_to_node(...)
: Aggregates
(pools) neighbor node values along one or more edge sets.
pool_neighbors_to_node_feature(...)
:
Aggregates (pools) sender node feature to receiver nodes feature.
pool_nodes_to_context(...)
: Aggregates (pools) node values to graph context.
random_graph_tensor(...)
: Generate a graph
tensor from a spec, with random features.
read_schema(...)
: Read a proto schema from a file with text-formatted contents.
reorder_nodes(...)
: Reorders nodes within node
sets according to indices.
reverse_tag(...)
: Flips tfgnn.SOURCE to tfgnn.TARGET and vice versa.
satisfies_size_constraints(...)
: Returns whether the input graph_tensor
satisfies total_sizes
.
satisfies_total_sizes(...)
: Returns whether the input graph_tensor
satisfies total_sizes
.
shuffle_features_globally(...)
:
Shuffles context, node set and edge set features of a scalar GraphTensor.
shuffle_nodes(...)
: Randomly reorders nodes of
given node sets, within each graph component.
softmax(...)
: Computes softmax over a many-to-one relationship in a GraphTensor.
softmax_edges_per_node(...)
: Returns softmax() of edge values per common node_tag
node.
structured_readout(...)
: Reads out a feature
value from select nodes (or edges) in a graph.
structured_readout_into_feature(...)
:
Reads out a feature value from select nodes (or edges) in a graph.
validate_graph_tensor_for_readout(...)
:
Checks graph
supports structured_readout()
from required_keys
.
validate_graph_tensor_spec_for_readout(...)
:
Checks graph_spec
supports structured_readout()
from required_keys
.
validate_schema(...)
: Validates the correctness of a graph schema instance.
write_example(...)
: Encode an eager GraphTensor
to a tf.train.Example proto.
write_schema(...)
: Write a GraphSchema
to a text-formatted proto file.
CONTEXT |
'context'
|
EDGES |
'edges'
|
HIDDEN_STATE |
'hidden_state'
|
NODES |
'nodes'
|
SIZE_NAME |
'#size'
|
SOURCE |
0
|
SOURCE_NAME |
'#source'
|
TARGET |
1
|
TARGET_NAME |
'#target'
|
**version** |
'1.0.0.dev3'
|