-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
index.html
94 lines (80 loc) · 2.84 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
<!--
Copyright 2018 Google LLC. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================
-->
<!doctype html>
<head>
<title>TensorFlow.js: Polynomial Regression with layers api</title>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" href="../shared/tfjs-examples.css" />
</head>
<style>
.equation-div {
font-family: monospace;
margin-bottom: 1em;
}
.input-div {
margin-bottom: 1em;
}
input {
width: 5em;
text-align: center;
}
</style>
<body>
<div class="tfjs-example-container centered-container">
<section class='title-area'>
<h1>TensorFlow.js: Polynomial Regression</h1>
<p class='subtitle'>Train a model to predict y-values for a cubic equation using a single layer perceptron</p>
</section>
<section>
<p class="section-head">Description</p>
<p>This model learns to generate a curve to match a polynomial equation. It uses a single layer perceptron with 4
weights.</p>
</section>
<section>
<p class="section-head">Data Generation</p>
<p>We generate training data using the following function and co-efficients. You can edit the co-efficients to
generate new data and fit the model.</p>
<div class="equation-div">
<span>y =</span>
<input id="cubic-coeff" value="6e-6"></input>
<span>* x^3 +</span>
<input id="quad-coeff" value="-2e-3"></input>
<span>* x^2 +</span>
<input id="linear-coeff" value="0.1"></input>
<span>* x +</span>
<input id="const-coeff" value="10"></input>
</div>
</section>
<section>
<p class="section-head">Training Parameters</p>
<div class="input-div">
<span>Learning rate:</span>
<input id="learning-rate" value="0.5"></input>
</div>
<div class="input-div">
<span>Epochs:</span>
<input id="epochs" value="40"></input>
</div>
</section>
<section>
<p class="section-head">Model Output</p>
<p>We plot a curve using y-coordinate predictions the model has learned to make for each x-coordinate.</p>
<div>
<canvas id="canvas" height="600" width="800"></canvas>
</div>
</section>
</div>
</body>
<script type="module" src="index.js"></script>