-
Notifications
You must be signed in to change notification settings - Fork 0
/
lyapFilter1.m
executable file
·58 lines (56 loc) · 1.22 KB
/
lyapFilter1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
function [out] = lyapFilter1(varargin)
A = varargin{1};
B = varargin{2};
beta = varargin{3};
lambda = 1;
if nargin == 4
lambda = varargin{4};
elseif nargin > 4
error('Error. Maximum inputs exceed (4)');
end
disp(lambda)
% Filter's parameter
alfa = 1 - beta;
% Dimensions of the rolmip variables
n = size(A{1},1);
m = size(B{1},2);
% Vertex of the polytope
N = size(A,2);
% Rolmip variables
for i=1:N
G{i} = sdpvar(n,n,'full');
P{i} = sdpvar(n,n,'symmetric');
K{i} = sdpvar(m,n,'full');
end
I = eye(3*n);
eps = 1e-6;
% LMI Condition
LMIs= [];
for i=1:N %varphik
for j=1:N %varphik+1
for l=1:N %varphik-1
for m=1:N %sigmak
matrix = [-G{i}-G{i}' A{m}*G{i}'+B{m}*K{l} G{i};G{i}*A{m}'+K{l}'*B{m}' (1/lambda)*P{i}-G{i}-G{i}' zeros(n,n);G{i}' zeros(n,n) -P{j}];
LMIs = LMIs + (matrix + I*eps <= 0);
end
end
end
end
% Objective Function
obj = [];
% Solution Options
options = sdpsettings('verbose',0,'warning',0,'solver','sedumi');
% Problem Solution
sol = optimize(LMIs,obj,options);
% Factiblity
fact = min(checkset(LMIs));
out.flag = fact;
if fact >= 0
out.G = G;
out.Pk = P;
out.K = K;
else
out.G = [];
out.Pk = [];
out.K = [];
end