-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathinterview_litellm.py
executable file
·131 lines (112 loc) · 5.92 KB
/
interview_litellm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#!/usr/bin/env python3
import argparse
import json
from time import sleep, time
from prepare import save_interview
from jinja2 import Template
import litellm
import requests
from prepare import cli_to_interviews
def convert_params(params):
# integrating liteLLM to provide a standard I/O interface for every LLM
# see https://docs.litellm.ai/docs/providers for list of supported providers
remap = { 'max_new_tokens': 'max_tokens', 'repetition_penalty': 'presence_penalty'}
model_params = {}
for k,v in params.items():
if remap.get(k): k=remap[k]
model_params[k] = v
return model_params
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Interview executor for LiteLLM')
parser.add_argument('--input', type=str, help='path to prepare*.ndjson from prepare stage')
parser.add_argument('--interview', type=str, default='senior', help='name of interview to run directly')
parser.add_argument('--prompt', type=str, help='chat template for interview', default='prompts/chat.json')
parser.add_argument('--model', type=str, default='openai/chatgpt', help='model to use')
parser.add_argument('--apibase', type=str, help='api base url override')
parser.add_argument('--apikey', type=str, help='api key (if required)')
parser.add_argument('--runtime', type=str, help='override runtime (when using openai-compatible server)')
parser.add_argument('--seed', type=int, default=42, help='random seed to use (helps determinism)')
parser.add_argument('--params', type=str, default='params/greedy-openai.json', help='parameter file to use')
parser.add_argument('--delay', type=int, default=0, help='delay between questions (in seconds)')
parser.add_argument('--templateout', type=str, help='output template')
parser.add_argument('--stop', type=str, help='stop sequences list json')
parser.add_argument('--debug', help='enable litellm debug mode')
args = parser.parse_args()
if not (args.input or args.interview): raise Exception("You must provide one of --input or --interview.")
# Load params and init model
params = convert_params(json.load(open(args.params)))
litellm.drop_params=True
model_name = args.model
runtime = model_name.split('/')[0]
if args.debug: litellm.set_verbose=True
# OpenAI custom base
if args.apibase:
# Normalize the base, must end in /v1
if args.apibase.endswith('/'): args.apibase = args.apibase[:-1]
if args.apibase.endswith('/v1'): args.apibase = args.apibase[:-3]
args.apibase += '/v1'
params['api_base'] = args.apibase
try:
target_model = args.model.replace('openai/','').replace('text-completion-openai/','').replace('text/','')
model_info = requests.get(args.apibase + '/models').json()
if args.model == 'openai/chatgpt':
model_name = 'openai/'+model_info['data'][0]['id']
else:
selected_model = [x for x in model_info['data'] if x['id'] == target_model]
if len(selected_model) == 0: raise Exception(f'Unable to find {args.model} at {args.apibase}')
if 'text-completion-openai/' in args.model or 'text/' in args.model:
model_name = 'text-completion-openai/'+selected_model[0]['id']
else:
model_name = 'openai/'+selected_model[0]['id']
args.model = model_name.split('/')[-1].replace('.gguf','')
print('> Detected model', model_name, args.model)
except:
raise Exception(f'Unable to reach {args.apibase}/models')
if 'koboldcpp/' in model_name:
runtime = 'koboldcpp'
elif model_info['data'][0].get('owned_by') == 'llamacpp':
runtime = 'llamacpp'
elif model_info['data'][0].get('owned_by') == 'tabbyAPI':
runtime = 'tabbyAPI'
elif args.runtime:
runtime = args.runtime
else:
raise Exception("Unable to auto-detect, please provide --runtime if --apibase is set")
print('> Detected runtime', runtime)
# Set a dummy key so it doesnt complain
if not args.apikey: args.apikey = 'xx-key-ignored'
if args.apikey:
params['api_key'] = args.apikey
if args.stop:
params['stop'] = json.loads(args.stop)
# Run interviews
interviews = cli_to_interviews(args.input, args.interview, None, args.prompt)
output_template = Template(open(args.templateout).read()) if args.templateout else None
for input_file, interview in interviews:
results = []
for idx, challenge in enumerate(interview):
print(f"{idx+1}/{len(interview)} {challenge['name']} {challenge['language']}")
messages = challenge['prompt']
if isinstance(messages, str):
print('WARNING: Using text completion.')
messages = [{'role': 'user', 'content': messages}]
t0 = time()
response = litellm.completion(model=model_name, messages=messages, seed=args.seed, **params)
t1 = time()
speed = response.usage.completion_tokens/(t1-t0)
msg = response.choices[0].message
answer = msg['content'] if isinstance(msg,dict) else msg.content
answer = output_template.render(**challenge, Answer=answer) if output_template else answer
print()
print(answer)
print(f"PERF: {model_name} generated {response.usage.completion_tokens} tokens in {t1-t0:.2f}s, {speed:.2f} tok/sec")
print()
result = challenge.copy()
result['answer'] = answer
result['params'] = params
result['model'] = args.model
result['runtime'] = runtime
results.append(result)
if args.delay:
sleep(args.delay)
save_interview(input_file, 'none', args.params, args.model, results)