-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathinterview_modal.tpl.py
116 lines (99 loc) · 5.01 KB
/
interview_modal.tpl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
from huggingface_hub import snapshot_download
import json
from jinja2 import Template
import modal
from interview_cuda import *
def download_model(name, info = {}, **kwargs):
for k,v in kwargs.items(): info[k] = v
with open("./_info.json",'w') as f:
json.dump({"model_name": name, **info}, f)
print(f'Downloading model {name} ...')
snapshot_download(name, ignore_patterns=["*.pth"], **kwargs)
# Example: Gemma2
#def model_gemma2_9b_instruct(): download_model('google/gemma-2-9b-it', info={'generate_args': { 'stop_seq': ['**Explanation:**']}})
#def model_gemma2_27b_instruct(): download_model('google/gemma-2-27b-it', info={'generate_args': { 'stop_seq': ['**Explanation:**']}})
#def model_gemma2_27b_gptq(): download_model('ModelCloud/gemma-2-27b-it-gptq-4bit', info={'VLLM_ATTENTION_BACKEND': 'FLASHINFER', 'generate_args': { 'stop_seq': ['**Explanation:**']}})
#def model_gemma2_2b_instruct(): download_model('google/gemma-2-2b-it', info={'generate_args': { 'stop_seq': ['**Explanation:**']}})
# Example: llama3.1
#def model_llama31_8b_instruct(): download_model('meta-llama/Meta-Llama-3.1-8B-Instruct')
#def model_llama31_8b_instruct_hqq(): download_model('mobiuslabsgmbh/Llama-3.1-8b-instruct_4bitgs64_hqq_calib')
#def model_llama31_8b_exl2_8bpw(): download_model('turboderp/Llama-3.1-8B-Instruct-exl2', revision='8.0bpw', info={'eos_token_id': 128009})
model_args = {{MODELARGS}}
def model_{{MODELSLUG}}():
download_model("{{MODELNAME}}", **model_args)
##### SELECT RUNTIME HERE #############
#RUNTIME = "transformers"
#RUNTIME = "ctranslate2"
#RUNTIME = "vllm"
#RUNTIME = "autogptq"
#RUNTIME = "exllama2"
#RUNTIME = "awq"
#RUNTIME = "quipsharp"
#RUNTIME = "hqq"
RUNTIME = "{{RUNTIME}}"
#######################################
##### SELECT GPU HERE #################
#gpu_request = modal.gpu.T4(count=1)
#gpu_request = modal.gpu.A10G(count=1)
#gpu_request = modal.gpu.A100(count=1, memory=80)
gpu_request = {{GPUREQUEST}}
#######################################
vllm_image = (
modal.Image.from_registry("nvidia/cuda:12.1.1-devel-ubuntu22.04",
setup_dockerfile_commands=["RUN apt-get update", "RUN apt-get install -y python3 python3-pip python-is-python3 git build-essential"])
.pip_install(
"transformers==4.47.1",
"tiktoken==0.7.0",
"bitsandbytes==0.45.0",
"accelerate==1.2.1",
"einops==0.8.0",
"sentencepiece==0.2.0",
"hf-transfer~=0.1",
"scipy==1.10.1",
"pyarrow==11.0.0",
"protobuf==3.20.3",
"vllm==0.6.6.post1",
"auto-gptq==0.7.1",
"https://github.com/turboderp/exllamav2/releases/download/v0.2.7/exllamav2-0.2.7+cu121.torch2.5.0-cp310-cp310-linux_x86_64.whl"
)
.pip_install("flash-attn==2.7.2.post1") # this errors out unless torch is already installed
.env({"HF_HUB_ENABLE_HF_TRANSFER": "1"})
##### SELECT MODEL HERE ##############
# .pip_install("git+https://github.com/huggingface/transformers.git")
.run_function(model_{{MODELSLUG}},
secrets=[modal.Secret.from_name("my-huggingface-secret")])
######################################
)
app = modal.App(image=vllm_image)
@app.cls(gpu=gpu_request, concurrency_limit=1, timeout=600, secrets=[modal.Secret.from_name("my-huggingface-secret")])
class ModalWrapper:
@modal.enter()
def startup(self):
self.info = json.load(open('./_info.json'))
try:
self.wrapper = load_runtime(self.info['model_name'], self.info, RUNTIME, 'fp16', gpu_request.count)
self.wrapper.load()
except Exception as e:
print(f'{RUNTIME} crashed during init or load:', e)
self.wrapper = None
@modal.method()
def generate(self, prompt, params):
return self.wrapper.generate(prompt, params)
@app.local_entrypoint()
def main(input: str = "", interview:str = "", params: str = "", templateout: str = "", prompt:str="prompts/chat.json", batch: bool = False):
from prepare import save_interview, cli_to_interviews
from interview_cuda import interview_run
from transformers import AutoTokenizer
print("Launching modal enviroment for {{MODELNAME}} with {{RUNTIME}}...")
output_template = Template(open(templateout).read()) if templateout else None
if params == "": params = "params/greedy-hf.json" if RUNTIME == "transformers" else "params/greedy-openai.json"
params_json = json.load(open(params,'r'))
print("Loading input ...")
tokenizer = AutoTokenizer.from_pretrained("{{MODELNAME}}", trust_remote_code=True, revision=model_args.get('revision'))
interviews = cli_to_interviews(input, interview, tokenizer, prompt)
print("Init model...")
model = ModalWrapper()
for input_file, interview in interviews:
print(f"Starting params={params} input={input_file}")
results, remote_info = interview_run(RUNTIME, model.generate.remote, interview, params_json, output_template, batch=batch )
save_interview(input_file, templateout if templateout else 'none', params, remote_info['model_name'], results)