From 6d6ca43329145cd9bf624c0e1877a5c77d3c6bfc Mon Sep 17 00:00:00 2001 From: Reed Mullanix Date: Mon, 12 Aug 2024 15:28:00 -0700 Subject: [PATCH] chore: fix separators --- .../Diagram/Coequaliser/RegularEpi.lagda.md | 2 +- src/Cat/Diagram/Separator.lagda.md | 28 +++++++++---------- src/Cat/Diagram/Separator/Regular.lagda.md | 2 +- 3 files changed, 16 insertions(+), 16 deletions(-) diff --git a/src/Cat/Diagram/Coequaliser/RegularEpi.lagda.md b/src/Cat/Diagram/Coequaliser/RegularEpi.lagda.md index 7ce995624..abdb4d027 100644 --- a/src/Cat/Diagram/Coequaliser/RegularEpi.lagda.md +++ b/src/Cat/Diagram/Coequaliser/RegularEpi.lagda.md @@ -210,7 +210,7 @@ follows by yet more brute-force calculation. (∐F.universal _ _ C.∘ ∐Ob.match F.₀ ∐F.ψ) C.∘ ∐Ob.ι F.₀ j ≡⟨ C.pullr (∐Ob.commute _) ⟩ ∐F.universal _ _ C.∘ ∐F.ψ j ≡⟨ ∐F.factors _ _ ⟩ e' C.∘ ∐Ob.ι F.₀ j ∎ - indexed-coproduct→regular-epi .has-is-coeq .unique {e' = e'} {colim = h} p = + indexed-coproduct→regular-epi .has-is-coeq .unique {e' = e'} {other = h} p = ∐F.unique _ _ _ λ j → h C.∘ ∐F.ψ j ≡˘⟨ ap₂ C._∘_ refl (∐Ob.commute _) ⟩ h C.∘ (∐Ob.match F.₀ ∐F.ψ C.∘ ∐Ob.ι F.₀ j) ≡⟨ C.pulll p ⟩ diff --git a/src/Cat/Diagram/Separator.lagda.md b/src/Cat/Diagram/Separator.lagda.md index 2679bae93..19d8c61e0 100644 --- a/src/Cat/Diagram/Separator.lagda.md +++ b/src/Cat/Diagram/Separator.lagda.md @@ -264,7 +264,7 @@ $S$ is a separating family. ```agda equalisers+conservative→separator : ∀ {s} - → has-equalisers C + → Equalisers C → is-conservative (Hom-from C s) → is-separator s ``` @@ -276,9 +276,9 @@ $e$ being an equaliser. ```agda equalisers+conservative→separator equalisers f∘-conservative {f = f} {g = g} p = - invertible→epic equ-invertible f g Eq.equal + invertible→epic equ-invertible f g equal where - module Eq = Equaliser (equalisers f g) + open Equalisers equalisers ``` Moreover, $\cC(S,-)$ is conservative, so it suffices to prove that @@ -286,14 +286,14 @@ precomposition of $e$ with an $S$-generalized element is an equivalence. This follows immediately from the universal property of equalisers! ```agda - equ-invertible : is-invertible Eq.equ + equ-invertible : is-invertible (equ f g) equ-invertible = f∘-conservative $ is-equiv→is-invertible $ is-iso→is-equiv $ iso - (λ e → Eq.universal (p e)) - (λ e → Eq.factors) - (λ h → sym (Eq.unique refl)) + (λ e → equalise e (p e)) + (λ e → equ∘equalise) + (λ h → sym (equalise-unique refl)) ``` A similar line of argument lets us generalize this result to separating @@ -302,7 +302,7 @@ families. ```agda equalisers+jointly-conservative→separating-family : ∀ {κ} {Idx : Type κ} {sᵢ : Idx → Ob} - → has-equalisers C + → Equalisers C → is-jointly-conservative (λ i → Hom-from C (sᵢ i)) → is-separating-family sᵢ ``` @@ -313,18 +313,18 @@ equalisers+jointly-conservative→separating-family ```agda equalisers+jointly-conservative→separating-family equalisers fᵢ∘-conservative {f = f} {g = g} p = - invertible→epic equ-invertible f g Eq.equal + invertible→epic equ-invertible f g equal where - module Eq = Equaliser (equalisers f g) + open Equalisers equalisers - equ-invertible : is-invertible Eq.equ + equ-invertible : is-invertible (equ f g) equ-invertible = fᵢ∘-conservative λ i → is-equiv→is-invertible $ is-iso→is-equiv $ iso - (λ eᵢ → Eq.universal (p eᵢ)) - (λ eᵢ → Eq.factors) - (λ h → sym (Eq.unique refl)) + (λ eᵢ → equalise eᵢ (p eᵢ)) + (λ eᵢ → equ∘equalise) + (λ h → sym (equalise-unique refl)) ``` diff --git a/src/Cat/Diagram/Separator/Regular.lagda.md b/src/Cat/Diagram/Separator/Regular.lagda.md index 2c0df6d0f..503305db0 100644 --- a/src/Cat/Diagram/Separator/Regular.lagda.md +++ b/src/Cat/Diagram/Separator/Regular.lagda.md @@ -135,7 +135,7 @@ This is straightforward enough to prove with sufficient elbow grease. (dense.universal _ ∘ ⊗!.match _ _ _) ∘ ⊗!.ι _ _ e ≡⟨ pullr (⊗!.commute _ _) ⟩ dense.universal _ ∘ e ≡⟨ dense.commute ⟩ e' ∘ ⊗!.ι _ _ e ∎ - regular .has-is-coeq .unique {e' = e'} {colim = h} p = + regular .has-is-coeq .unique {e' = e'} {other = h} p = dense.unique _ λ e → h ∘ e ≡˘⟨ ap (h ∘_) (⊗!.commute (Hom s x) s) ⟩ h ∘ ⊗!.match _ _ _ ∘ ⊗!.ι _ _ e ≡⟨ pulll p ⟩