-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPreprocessing.rmd
951 lines (711 loc) · 32.9 KB
/
Preprocessing.rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
---
title: "DataCleaning"
author: "Signe Kløve Kjær"
date: "2/5/2019"
output: word_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
#Loading packages
```{r loading packages, include = FALSE}
library(brms);library(tidyverse); library(tidybayes); library(ggplot2); library(LaplacesDemon); library(tidyr); library(reshape2);library(pacman); library(tibble);library(tidyr);
```
#Define path
```{r}
#Defining path
data_path = ("~/SocKultExam/Data/") #Kiri
#Thea
#setwd("~/SocKultExam")
#data_path = ("Data/")
#Signe
#data_path = ("/Users/signeklovekjaer/Documents/CognitiveScience/4.semester/Social_and_cultural_dynamics_in_cognition/Exam/SocKultExam/Data/")
```
#Loading data and merging
```{r loading main data include = FALSE}
#Listing files in path
files <- list.files(path = data_path)
#Create empty data frame
data <- data.frame(matrix(ncol = 36, nrow = 0))
#Looping through data files and inserting in dataframe
for (i in files) {
d <- read.delim(file = paste(data_path, i, sep = ""), sep = ",", header = TRUE)
data = rbind(data,d)
}
```
```{r loading data with different amount of trials}
#Setting different path for extraordinary files
#kiri_path = ("~/SocKultExam/") #Thea
kiri_path = ("~/SocKultExam/kiri/")#Kiri
#kiri_path = ("/Users/signeklovekjaer/Documents/CognitiveScience/4.semester/Social_and_cultural_dynamics_in_cognition/Exam/SocKultExam/") #Signe
#Listing files in directory
kiri_files <- list.files(path = kiri_path, pattern = "*.csv")
#Creating empty data frame
kiri_data <- data.frame(matrix(ncol = 35, nrow = 0))
#Looping through Kiri data
for (i in kiri_files) {
d <- read.delim(file = paste(kiri_path, i, sep = ""), sep = ",", header = TRUE, stringsAsFactors = FALSE)
kiri_data = rbind(kiri_data, d)
}
```
```{r}
#Merge the two dataframes
kiri_data <- add_column(kiri_data, Computer = "Two screens", .after = 4)
data <- rbind(data, kiri_data)
```
#Data cleaning
```{r cleaning data, include = FALSE}
#Removing column of x
data <- subset(data, select = -c(X))
#Cleaning group numbers
data$GroupNumber[data$GroupNumber == "17_10_30"] <- 17
data$GroupNumber[data$GroupNumber == "18_10_30"] <- 18
data$GroupNumber[data$GroupNumber == "19_10_50"] <- 19
data$GroupNumber[data$GroupNumber == "20_10_50"] <- 20
data$GroupNumber[data$GroupNumber == "21_12_15"] <- 21
data$GroupNumber[data$GroupNumber == "22_12_15"] <- 22
data$GroupNumber[data$GroupNumber == "23_12_40"] <- 23
data$GroupNumber[data$GroupNumber == "24_12_40"] <- 24
data$GroupNumber[data$GroupNumber == "25_15_00"] <- 25
data$GroupNumber[data$GroupNumber == "26_15_00"] <- 26
data$GroupNumber[data$GroupNumber == "27_15_20"] <- 27
data$GroupNumber[data$GroupNumber == "28_15_20"] <- 28
data$GroupNumber[data$GroupNumber == "29_16_00"] <- 29
data$GroupNumber[data$GroupNumber == "30_16_00"] <- 30
data$GroupNumber[data$GroupNumber == "31_16_20"] <- 31
data$GroupNumber[data$GroupNumber == "32_16_20"] <- 32
data$GroupNumber[data$GroupNumber == "33_9_30"] <- 33
data$GroupNumber[data$GroupNumber == "34_09_30"] <- 34
data$GroupNumber[data$GroupNumber == "35_09_50"] <- 35
data$GroupNumber[data$GroupNumber == "36_9_50"] <- 36
data$GroupNumber[data$GroupNumber == "37_26_4"] <- 37
data$GroupNumber[data$GroupNumber == "38_26_4"] <- 38
data$GroupNumber[data$GroupNumber == "39_26_4"] <- 39
data$GroupNumber[data$GroupNumber == "40_26_4"] <- 40
#Cleaning subject IDs
data$SubjectID_left <- as.character(data$SubjectID_left)
data$SubjectID_right <- as.character(data$SubjectID_right)
data$SubjectID_left[data$SubjectID_left == "steph"] <- "stephanie"
data$SubjectID_right[data$SubjectID_right == "Emil"] <- "emil"
data$SubjectID_right[data$SubjectID_right == "Sebber"] <- "seb"
data$SubjectID_left[data$SubjectID_left == "signe"] <- "SigneR"
data$SubjectID_right[data$SubjectID_right == "karo"] <- "Karoline"
data$SubjectID_right[data$SubjectID_right == "tobias"] <- "Toby"
data$SubjectID_left[data$SubjectID_left == "Nina"] <- "nina"
data$SubjectID_right[data$SubjectID_right == "theasmom"] <- "Theasmom"
data$SubjectID_left[data$SubjectID_left == "emma"] <- "Emma"
data$SubjectID_right[data$SubjectID_right == "LasseKob"] <- "Lasse"
```
##Adding difficulty variable og dummy coding
```{r making variables for sensitivty, include = FALSE}
#Making unique subjects
data$unique_ID_right <- paste(data$GroupNumber, data$SubjectID_right, sep = "_")
data$unique_ID_left <- paste(data$GroupNumber, data$SubjectID_left, sep = "_")
#Making column, which expresses difficulty
data$dif_blue <- data$Prop_blue_image_2 - data$Prop_blue_image_1
data$dif_blue_abs <- abs(data$Prop_blue_image_2 - data$Prop_blue_image_1)
#Making a column, which expresses answer of participants, 0 = left picture, 1 = right picture
data$right_answer <- ifelse(data$Response_right > 0, 1, 0)
data$left_answer <- ifelse(data$Response_left > 0, 1, 0)
#Joining joint answer to one column
data$joint_answer <- data$Joint_right+ data$Joint_left
#Recoding joint answer to be 0 and 1's, 0 right, 1 left, NA = no leader
data$joint_answer[data$joint_answer == 0] <- NA #Replacing 0's with NA
data$joint_answer[data$joint_answer == -1] <- 0
```
##Adding variables: Agree, chosen leader and gender
```{r coding for leader/follower}
#create a column that sorts out all the agreed trials
data$chosen_leader <- ifelse(data$right_answer == data$left_answer, "Agree", 0)
#Create variable, which determines the chosen leader
data$chosen_leader[data$chosen_leader == 0 & data$Joint_right == 0] <- "Left_lead"
data$chosen_leader[data$chosen_leader == 0 & data$Joint_left == 0] <- "Right_lead"
#create column that specifies the gender of the leader
data$Leader_gender <- 0
data$Leader_gender <- ifelse(data$chosen_leader == "Left_lead", as.character(data$Gender_left), as.character(data$Gender_right))
data$Leader_gender[data$chosen_leader == "Agree"] <- NA
#create column that specifies the gender of the follower
data$Follower_gender <- 0
data$Follower_gender <- ifelse(data$chosen_leader == "Left_lead", as.character(data$Gender_right), as.character(data$Gender_left))
data$Follower_gender[data$chosen_leader == "Agree"] <- NA
```
#Adding variable: Stick/surrender
```{r Did the leader stick?}
#leader stubbornness
data$Stubborn_leader <- 0 #Creating column of 0's
data$Stubborn_leader[data$chosen_leader == "Right_lead" & data$joint_answer == data$right_answer] <- "stick" #Inserting cases were leader stick for right leader
data$Stubborn_leader[data$chosen_leader == "Right_lead" & data$joint_answer != data$right_answer] <- "surrender" #Inserting cases were leader surrender for right leader
data$Stubborn_leader[data$chosen_leader == "Left_lead" & data$joint_answer == data$left_answer] <- "stick" #Inserting cases were leader stick for left leader
data$Stubborn_leader[data$chosen_leader == "Left_lead" & data$joint_answer != data$left_answer] <- "surrender" #Inserting cases were leader surreder for left leader
data$Stubborn_leader[data$chosen_leader == "Agree"] <- NA #Removing cases were they agree
```
```{r Plotting the effect of stick or surrender, leader and follower gender}
#Filtering data to include only joint decisions
disagree_data <- na.omit(data)
#Making one column specifying the leader and follower gender
disagree_data$Leader_Follower <- paste("Leader:", disagree_data$Leader_gender, "_Follower:", disagree_data$Follower_gender, sep = "")
#Recoding stick to 0 and 1, stick = 1, 0 = surrender
disagree_data$stick <- ifelse(disagree_data$Stubborn_leader == "stick", 1, 0)
#Plotting the count
ggplot(data = disagree_data, aes(Stubborn_leader, fill = Stubborn_leader)) +
facet_grid(~Leader_Follower) +
geom_histogram(stat = "count")
```
Bayesian tutorial on logistic regression: https://www.jamesrrae.com/post/bayesian-logistic-regression-using-brms-part-1/
#NO POOLING
###Individual performance
```{r logistic regression using wide format, individual left}
###LEFT
#Getting priors
get_prior(left_answer ~ dif_blue, data = data, family = "bernoulli")
get_prior(Correct_left ~ 0 +dif_blue_abs, data = data, family = "bernoulli")
#Making a number of iterations variable
n = 1
###Making a loop for individual slope
for (i in unique(data$unique_ID_left)){
data_i <- filter(data, unique_ID_left == i) #Choosing temporary data
#Defining paths for plots
trans_left_path = file.path("~/SocKultExam/plots/transition/left/", paste("trans_left_plot_", i, ".jpeg", sep = ""))
pp_left_path = file.path("~/SocKultExam/plots/pp_check/left/", paste("pp_left_plot_",i, ".jpeg", sep = ""))
marginal_left_path = file.path("~/SocKultExam/plots/marginal/left/", paste("marginal_left_plot_", i, ".jpeg", sep = ""))
#...and for correct
correct_trans_left_path = file.path("~/SocKultExam/plots/correct_transition/left/", paste("correct_trans_left_plot_", i, ".jpeg", sep = ""))
correct_pp_left_path = file.path("~/SocKultExam/plots/correct_pp_check/left/", paste("correct_pp_left_plot_",i, ".jpeg", sep = ""))
correct_marginal_left_path = file.path("~/SocKultExam/plots/correct_marginal/left/", paste("correct_marginal_left_plot_", i, ".jpeg", sep = ""))
#Defining priors
prior = c(
prior(normal(0,0.17), class = "Intercept"), #Why does this not work?
prior(normal(0,0.125), class = "b", coef = "dif_blue")
)
#...and for correct
correct_prior = c(
prior(normal(0,0.25), class = "b", coef = "dif_blue_abs")
)
#Prior predictive check
prior_check <- brm( left_answer ~ dif_blue, prior = prior,
data = data_i, sample_prior = "only",iter = 4000, family = "bernoulli")
#Prior predictive check
correct_prior_check <- brm(Correct_left ~ 0 + dif_blue_abs, prior = correct_prior,
data = data_i, sample_prior = "only",iter = 4000, family = "bernoulli")
#Making the model - using answer
m <- brm(
left_answer ~ dif_blue,
data = data_i,
prior = prior,
family = "bernoulli", #As we had a binary outcome, we set this to "bernoulli"
seed = 123 # Adding a seed makes results reproducible.
)
#Making the model - using correctness
m_c <- brm(
Correct_left ~ 0 + dif_blue_abs,
data = data_i,
prior = correct_prior,
family = "bernoulli", #As we had a binary outcome, we set this to "bernoulli"
seed = 123 # Adding a seed makes results reproducible.
)
#Marginal effects plot: Plotted and saved
jpeg(file=marginal_left_path)
print(marginal_effects(m))
dev.off()
#Transition plot: plotted and saved
jpeg(file=trans_left_path)
print(plot(m))
dev.off()
#pp_check plot: Plotted and saved
jpeg(file=pp_left_path)
print(pp_check(prior_check, nsamples = 100))
dev.off()
#model with correct
#Marginal effects plot: Plotted and saved
jpeg(file=correct_marginal_left_path)
print(marginal_effects(m_c))
dev.off()
#Transition plot: plotted and saved
jpeg(file=correct_trans_left_path)
print(plot(m_c))
dev.off()
#pp_check plot: Plotted and saved
jpeg(file=correct_pp_left_path)
print(pp_check(correct_prior_check, nsamples = 100))
dev.off()
summary(m)
summary(m_c)
#Saving summary in temporary dataframe
data_i$Est_int_left <- fixef(m)[1]
data_i$Error_int_left <- fixef(m)[3]
data_i$Est_dif_blue_left <- fixef(m)[2]
data_i$Error_dif_blue_left <- fixef(m)[4]
data_i$Est_int_left_correct <- fixef(m_c)[1]
data_i$Error_int_left_correct <- fixef(m_c)[3]
data_i$Est_dif_blue_left_correct <- fixef(m_c)[2]
data_i$Error_dif_blue_left_correct <- fixef(m_c)[4]
data_i$Rhat_1_left <- m[["fit"]]@.MISC[["summary"]][["rhat"]][[1]]
data_i$Rhat_2_left <- m[["fit"]]@.MISC[["summary"]][["rhat"]][[2]]
data_i$Rhat_3_left <- m[["fit"]]@.MISC[["summary"]][["rhat"]][[3]] #Why are there three?
data_i$Ess_1_left <- m[["fit"]]@.MISC[["summary"]][["ess"]][[1]]
data_i$Ess_2_left <- m[["fit"]]@.MISC[["summary"]][["ess"]][[2]]
data_i$Ess_3_left <- m[["fit"]]@.MISC[["summary"]][["ess"]][[3]] #Why are there three?
#Insert into permanent data frame
if (n == 1){
Results <- data_i
} else {
Results <- rbind(Results, data_i)
}
#Adding 1 to number of iterations
n = n + 1
}
write.csv(Results, file = "Results_left.csv")
```
```{r logistic regression using wide format, individual right}
###RIGHT
#Making a number of iterations variable
n = 1
###Making a loop for individual slope
for (i in unique(data$unique_ID_right)){
data_i <- filter(data, unique_ID_right == i) #changed from data_i <- filter(Results, unique_ID_right == i)
#Defining paths for plots
trans_right_path = file.path("~/SocKultExam/plots/transition/right/", paste("trans_right_plot_", i, ".jpeg", sep = ""))
pp_right_path = file.path("~/SocKultExam/plots/pp_check/right/", paste("pp_right_plot_",i, ".jpeg", sep = ""))
marginal_right_path = file.path("~/SocKultExam/plots/marginal/right/", paste("marginal_right_plot_", i, ".jpeg", sep = ""))
#...and for correct
correct_trans_right_path = file.path("~/SocKultExam/plots/correct_transition/right/", paste("correct_trans_right_plot_", i, ".jpeg", sep = ""))
correct_pp_right_path = file.path("~/SocKultExam/plots/correct_pp_check/right/", paste("correct_pp_right_plot_",i, ".jpeg", sep = ""))
correct_marginal_right_path = file.path("~/SocKultExam/plots/correct_marginal/right/", paste("correct_marginal_right_plot_", i, ".jpeg", sep = ""))
#Defining priors
prior = c(
prior(normal(0,0.17), class = "Intercept"), #Why does this not work?
prior(normal(0,0.125), class = "b", coef = "dif_blue")
)
#...and for correct
correct_prior = c(
prior(normal(0,0.25), class = "b", coef = "dif_blue_abs")
)
#Prior predictive check
prior_check <- brm(right_answer ~ dif_blue, prior = prior,
data = data_i, sample_prior = "only",iter = 4000, family = "bernoulli")
#Prior predictive check
correct_prior_check <- brm( Correct_right ~ 0 + dif_blue_abs, prior = correct_prior,
data = data_i, sample_prior = "only",iter = 4000, family = "bernoulli")
#Making the model - using answer
m <- brm(
right_answer ~ dif_blue,
data = data_i,
prior = prior,
family = "bernoulli", #As we had a binary outcome, we set this to "bernoulli"
seed = 123 # Adding a seed makes results reproducible.
)
#Making the model - using correctness
m_c <- brm(
Correct_right ~ 0 + dif_blue_abs,
data = data_i,
prior = correct_prior,
family = "bernoulli", #As we had a binary outcome, we set this to "bernoulli"
seed = 123 # Adding a seed makes results reproducible.
)
#Marginal effects plot: Plotted and saved
jpeg(file=marginal_right_path)
print(marginal_effects(m))
dev.off()
#transition plot: Plotted and saved
jpeg(file=trans_right_path)
print(plot(m))
dev.off()
#pp_check plot: Plotted and saved
jpeg(file=pp_right_path)
print(pp_check(prior_check, nsamples = 100))
dev.off()
#model with correct
#Marginal effects plot: Plotted and saved
jpeg(file=correct_marginal_right_path)
print(marginal_effects(m_c))
dev.off()
#Transition plot: plotted and saved
jpeg(file=correct_trans_right_path)
print(plot(m_c))
dev.off()
#pp_check plot: Plotted and saved
jpeg(file=correct_pp_right_path)
print(pp_check(correct_prior_check, nsamples = 100))
dev.off()
summary(m)
summary(m_c)
#Saving summary in temporary dataframe
data_i$Est_int_right <- fixef(m)[1]
data_i$Error_int_right <- fixef(m)[3]
data_i$Est_dif_blue_right <- fixef(m)[2]
data_i$Error_dif_blue_right <- fixef(m)[4]
data_i$Est_int_right_correct <- fixef(m_c)[1]
data_i$Error_int_right_correct <- fixef(m_c)[3]
data_i$Est_dif_blue_right_correct <- fixef(m_c)[2]
data_i$Error_dif_blue_right_correct <- fixef(m_c)[4]
data_i$Rhat_1_right <- m[["fit"]]@.MISC[["summary"]][["rhat"]][[1]]
data_i$Rhat_2_right <- m[["fit"]]@.MISC[["summary"]][["rhat"]][[2]]
data_i$Rhat_3_right <- m[["fit"]]@.MISC[["summary"]][["rhat"]][[3]] #Why are there three?
data_i$Ess_1_right <- m[["fit"]]@.MISC[["summary"]][["ess"]][[1]]
data_i$Ess_2_right <- m[["fit"]]@.MISC[["summary"]][["ess"]][[2]]
data_i$Ess_3_right <- m[["fit"]]@.MISC[["summary"]][["ess"]][[3]] #Why are there three?
#Insert into permanent data frame
if (n == 1){
Results <- data_i
} else {
Results <- rbind(Results, data_i)
}
n = n + 1
}
write.csv(Results, file = "Results_left_and_right.csv")
```
###Joint performance
```{r logistic regression using wide format, joint}
###JOINT
#Making a number of iterations variable
n = 1
###Making a loop for individual slope
for (i in unique(data$GroupNumber)){
data_i <- filter(data, GroupNumber == i)
#Defining paths for plots
trans_joint_path = file.path("~/SocKultExam/plots/transition/joint/", paste("trans_joint_plot_", i, ".jpeg", sep = ""))
pp_joint_path = file.path("~/SocKultExam/plots/pp_check/joint/", paste("pp_joint_plot_",i, ".jpeg", sep = ""))
marginal_joint_path = file.path("~/SocKultExam/plots/marginal/joint/", paste("marginal_joint_plot_", i, ".jpeg", sep = ""))
#...and for correct
correct_trans_joint_path = file.path("~/SocKultExam/plots/correct_transition/joint/", paste("correct_trans_joint_plot_", i, ".jpeg", sep = ""))
correct_pp_joint_path = file.path("~/SocKultExam/plots/correct_pp_check/joint/", paste("correct_pp_joint_plot_",i, ".jpeg", sep = ""))
correct_marginal_joint_path = file.path("~/SocKultExam/plots/correct_marginal/joint/", paste("correct_marginal_joint_plot_", i, ".jpeg", sep = ""))
#Defining priors
prior = c(
prior(normal(0,0.17), class = "Intercept"), #Why does this not work?
prior(normal(0,0.125), class = "b", coef = "dif_blue")
)
#...and for correct
correct_prior = c(
prior(normal(0,0.25), class = "b", coef = "dif_blue_abs")
)
#Prior predictive check
prior_check <- brm(joint_answer ~ dif_blue, prior = prior,
data = data_i, sample_prior = "only",iter = 4000, family = "bernoulli")
#Prior predictive check
correct_prior_check <- brm( Correct_joint ~ 0 + dif_blue_abs, prior = correct_prior,
data = data_i, sample_prior = "only",iter = 4000, family = "bernoulli")
#Making the model - using answer
m <- brm(
joint_answer ~ dif_blue,
data = data_i,
prior = prior,
family = "bernoulli", #As we had a binary outcome, we set this to "bernoulli"
seed = 123 # Adding a seed makes results reproducible.
)
#Making the model - using correctness
m_c <- brm(
Correct_joint ~ 0 + dif_blue_abs,
data = data_i,
prior = correct_prior,
family = "bernoulli", #As we had a binary outcome, we set this to "bernoulli"
seed = 123 # Adding a seed makes results reproducible.
)
#Marginal plot
jpeg(file=marginal_joint_path)
print(marginal_effects(m))
dev.off()
#transition plot: Plotted and saved
jpeg(file=trans_joint_path)
print(plot(m))
dev.off()
#pp_check plot: Plotted and saved
jpeg(file=pp_joint_path)
print(pp_check(prior_check, nsamples = 100))
dev.off()
#Model with correct
#Marginal effects plot: Plotted and saved
jpeg(file=correct_marginal_joint_path)
print(marginal_effects(m_c))
dev.off()
#Transition plot: plotted and saved
jpeg(file=correct_trans_joint_path)
print(plot(m_c))
dev.off()
#pp_check plot: Plotted and saved
jpeg(file=correct_pp_joint_path)
print(pp_check(correct_prior_check, nsamples = 100))
dev.off()
summary(m)
#Saving summary in temporary dataframe
data_i$Est_int_joint <- fixef(m)[1]
data_i$Error_int_joint <- fixef(m)[3]
data_i$Est_dif_blue_joint <- fixef(m)[2]
data_i$Error_dif_blue_joint <- fixef(m)[4]
data_i$Est_int_joint_correct <- fixef(m_c)[1]
data_i$Error_int_joint_correct <- fixef(m_c)[3]
data_i$Est_dif_blue_joint_correct <- fixef(m_c)[2]
data_i$Error_dif_blue_joint_correct <- fixef(m_c)[4]
data_i$Rhat_1_joint <- m[["fit"]]@.MISC[["summary"]][["rhat"]][[1]]
data_i$Rhat_2_joint <- m[["fit"]]@.MISC[["summary"]][["rhat"]][[2]]
data_i$Rhat_3_joint <- m[["fit"]]@.MISC[["summary"]][["rhat"]][[3]] #Why are there three?
data_i$Ess_1_joint <- m[["fit"]]@.MISC[["summary"]][["ess"]][[1]]
data_i$Ess_2_joint <- m[["fit"]]@.MISC[["summary"]][["ess"]][[2]]
data_i$Ess_3_joint <- m[["fit"]]@.MISC[["summary"]][["ess"]][[3]] #Why are there three?
#Insert into permanent data frame
if (n == 1){
Results <- data_i
} else {
Results <- rbind(Results, data_i)
}
#Adding to the number of iterations
n = n + 1
}
write.csv(Results, file = "Results_left_right_joint.csv")
```
#Partial pooling
We need one column containing answer from both left and right in order to allow pooling between all participants
```{r making long format, include = FALSE}
#Subsetting the left data
left <- subset(data, select = c(GroupNumber, unique_ID_left, dif_blue, left_answer, joint_answer, Correct_left, Correct_joint, dif_blue_abs))
#Changing names
names(left) <- c("GroupNumber", "unique", "dif_blue", "answer", "joint_answer", "Correct", "Correct_joint", "dif_blue_abs")
#Subsetting right data
right <- subset(data, select = c(GroupNumber, unique_ID_right, dif_blue, right_answer, joint_answer, Correct_left, Correct_joint, dif_blue_abs))
#Chainging names
names(right) <- c("GroupNumber", "unique", "dif_blue", "answer", "joint_answer", "Correct", "Correct_joint", "dif_blue_abs")
#Removing half the joint data to inform the model, there is only one.
right$Correct_joint <- NA
right$joint_answer <- NA
#Joining the dataframes
ldata <- rbind(left, right)
#Setting NA in correct answers
ldata$Correct_joint[is.na(ldata$joint_answer)] <- NA
```
When we have the long format, we can do a model with partial pooling: get_prior(answer ~ dif_blue + unique_ID, data = data)
A consideration: Should we allow different slopes for the same participant in different groups?
- Yes, this makes more sense, when calculating performance difference.
OBS: Needs discussion
- When saving the betas, we do not want the main effect of difficulty, can we just add that to the beta for the individual slope?
- I think not, since it is in the scale of log odds. This is probably, what Riccardo is talking about.
```{r creating model with partial pooling, individual}
#Getting priors
get_prior(answer ~ dif_blue + (1+ dif_blue|unique), family = "bernoulli", data = ldata)
get_prior(Correct ~ 0 + dif_blue + (0+ dif_blue|unique), family = "bernoulli", data = ldata)
#Defining priors
prior_answer = c(
prior(normal(0,0.125), class = "b", coef = "dif_blue"),
prior(normal(0,0.17), class = "Intercept"),
prior(normal(0,0.125), class = "sd", coef = "dif_blue", group = "unique"),
prior(normal(0,0.17), class = "sd", coef = "Intercept", group = "unique")
)
prior_correct = c(
prior(normal(0,0.25), class = "b", coef = "dif_blue_abs"),
prior(normal(0,0.25), class = "sd", coef = "dif_blue_abs", group = "unique")
)
#Defining paths for plots
trans_path_pool_indi = file.path("~/SocKultExam/plots/transition/pool/trans_plot_pool_individual.jpeg")
pp_path_pool_indi = file.path("~/SocKultExam/plots/pp_check/pool/pp_plot_pool_individual.jpeg")
marginal_path_pool_indi = file.path("~/SocKultExam/plots/marginal/pool/marginal_plot_pool_individual.jpeg")
#...and for correct
correct_trans_path_pool_indi = file.path("~/SocKultExam/plots/correct_transition/pool/correct_trans_plot_pool_individual.jpeg")
correct_pp_path_pool_indi = file.path("~/SocKultExam/plots/correct_pp_check/pool/correct_pp_plot_pool_individual.jpeg")
correct_marginal_path_pool_indi = file.path("~/SocKultExam/plots/correct_marginal/pool/correct_marginal_plot_pool_individual.jpeg")
#Prior predictive check - for answer
prior_check_answer_pool_individual <- brm( answer ~ dif_blue + (dif_blue|unique), prior = prior_answer,
data = ldata, sample_prior = "only",iter = 4000, family = "bernoulli")
#Prior predictive check - for correct
prior_check_correct_pool_individual <- brm(Correct ~ 0 + dif_blue_abs + (0 +dif_blue_abs|unique), prior = prior_correct,
data = ldata, sample_prior = "only",iter = 4000, family = "bernoulli")
#Making the model - using answer
m_p <- brm(
answer ~ dif_blue + (1+dif_blue|unique),
data = ldata,
prior = prior_answer,
family = "bernoulli", #As we had a binary outcome, we set this to "bernoulli"
seed = 123 # Adding a seed makes results reproducible.
)
#Making the model - using correct
m_p_c <- brm(
Correct ~ 0 +dif_blue_abs + (0+dif_blue_abs|unique),
data = ldata,
prior = prior_correct,
family = "bernoulli", #As we had a binary outcome, we set this to "bernoulli"
seed = 123 # Adding a seed makes results reproducible.
)
#Marginal effects plot: Plotted and saved
jpeg(file=marginal_path_pool_indi)
print(marginal_effects(m_p))
dev.off()
#transition plot: Plotted and saved
jpeg(file=trans_path_pool_indi)
print(plot(m_p))
dev.off()
#pp_check plot: Plotted and saved
jpeg(file=pp_path_pool_indi)
print(pp_check(prior_check_answer_pool_individual, nsamples = 100))
dev.off()
#For correct
#Marginal effects plot: Plotted and saved
jpeg(file=correct_marginal_path_pool_indi)
print(marginal_effects(m_p_c))
dev.off()
#transition plot: Plotted and saved
jpeg(file=correct_trans_path_pool_indi)
print(plot(m_p_c))
dev.off()
#pp_check plot: Plotted and saved
jpeg(file=correct_pp_path_pool_indi)
print(pp_check(prior_check_correct_pool_individual, nsamples = 100))
dev.off()
###Saving the estimates
#ANSWER
#Saving random effect for individual
pooling_individual_ranef <- as.data.frame(ranef(m_p))[,1:2] #Intercept
pooling_individual_ranef <- cbind(pooling_individual_ranef, as.data.frame(ranef(m_p))[,5:6]) #Slope
#Adding fixed effects to random effect
pooling_individual_fixef <- as.data.frame(fixef(m_p)) #Making data frame of fixed effects
pooling_individual$Intercept_ranef_fixef_estimate_answer <- pooling_individual_ranef[, 1] + pooling_individual_fixef[1, 1] #Adding fixef of intercept to ranef of intercept
pooling_individual$Slope_ranef_fixef_estimate_answer <- pooling_individual_ranef[, 3] + pooling_individual_fixef[1, 2] #Adding fixef of slope to ranef of slope
#CORRECT
#Saving random effect for individual
pooling_individual_ranef <- as.data.frame(ranef(m_p_c))[,1:2] #Slope
#Adding fixed effects to random effect
pooling_individual_fixef <- as.data.frame(fixef(m_p_c)) #Making data frame of fixed effects
pooling_individual$Slope_ranef_fixef_estimate_correct <- pooling_individual_ranef[, 1] + pooling_individual_fixef[1, 1] #Adding fixef of slope to ranef of slope
#Adding rownames
pooling_individual <- cbind(Row.Names = rownames(pooling_individual_ranef), as.data.frame(pooling_individual))
write.csv(pooling_individual, file = "pooling_individual.csv")
```
```{r creating wide format, include = FALSE, this does not work}
#Merging ldata output with wide data frame
data$Group <-data$GroupNumber
#Inserting estimates in wide format
data$Intercept_pooling_rf_left[data$GroupNumber == unique(str_extract(pooling_individual$Row.Names, "\\d"))] <- pooling_individual$Intercept_ranef_fixef_estimate_answer[data$SubjectID_left == removeNumbers(gsub('[_]', '', pooling_individual$Row.Names))]
```
```{r creating model with partial pooling, joint, skal ikke bruges alligevel}
get_prior(joint_answer ~ dif_blue + (1 + dif_blue|GroupNumber), family = "bernoulli", data = ldata)
get_prior(Correct_joint ~ dif_blue_abs + (0 + dif_blue|GroupNumber), family = "bernoulli", data = ldata)
#Defining priors
prior_answer_joint = c(
prior(normal(0,0.125), class = "b", coef = "dif_blue"),
prior(normal(0,0.17), class = "Intercept"),
prior(normal(0,0.125), class = "sd", coef = "dif_blue", group = "GroupNumber"),
prior(normal(0,0.17), class = "sd", coef = "Intercept", group = "GroupNumber")
)
prior_correct_joint = c(
prior(normal(0,0.25), class = "b", coef = "dif_blue_abs"),
prior(normal(0,0.25), class = "sd", coef = "dif_blue_abs", group = "GroupNumber")
)
#Defining paths for plots
trans_path_pool_joint = file.path("~/SocKultExam/plots/transition/pool/trans_plot_pool_joint.jpeg")
pp_path_pool_joint = file.path("~/SocKultExam/plots/pp_check/pool/pp_plot_pool_joint.jpeg")
marginal_path_pool_joint = file.path("~/SocKultExam/plots/marginal/pool/marginal_plot_pool_joint.jpeg")
#...and for correct
correct_trans_path_pool_joint = file.path("~/SocKultExam/plots/correct_transition/pool/correct_trans_plot_pool_joint.jpeg")
correct_pp_path_pool_joint = file.path("~/SocKultExam/plots/correct_pp_check/pool/correct_pp_plot_pool_joint.jpeg")
correct_marginal_path_pool_joint = file.path("~/SocKultExam/plots/correct_marginal/pool/correct_marginal_plot_pool_joint.jpeg")
#Prior predictive check - for answer
prior_check_answer_pool_joint <- brm(joint_answer ~ dif_blue + (dif_blue|GroupNumber), prior = prior_answer_joint,
data = ldata, sample_prior = "only",iter = 4000, family = "bernoulli")
#Prior predictive check - for correct
prior_check_correct_pool_joint <- brm(Correct_joint ~ 0 + dif_blue_abs + (0 +dif_blue_abs|GroupNumber), prior = prior_correct_joint,
data = ldata, sample_prior = "only",iter = 4000, family = "bernoulli")
#Joint model with answer
m_joint_answer <- brm(
joint_answer ~ dif_blue + (1 + dif_blue|GroupNumber),
data = ldata,
prior = prior_answer_joint,
family = "bernoulli", #As we had a binary outcome, we set this to "bernoulli"
seed = 123 # Adding a seed makes results reproducible.
)
summary(m_joint_answer)
#Joint model with correct
m_joint_correct <- brm(
Correct_joint ~ 0 + dif_blue_abs + (0+dif_blue_abs|GroupNumber),
data = ldata,
prior = prior_correct_joint,
family = "bernoulli", #As we had a binary outcome, we set this to "bernoulli"
seed = 123 # Adding a seed makes results reproducible.
)
summary(m_joint_correct)
#Marginal effects plot: Plotted and saved
jpeg(file=marginal_path_pool_joint)
print(marginal_effects(m_joint_answer))
dev.off()
#transition plot: Plotted and saved
jpeg(file=trans_path_pool_joint)
print(plot(m_joint_answer))
dev.off()
#pp_check plot: Plotted and saved
jpeg(file=pp_path_pool_joint)
print(pp_check(prior_check_answer_pool_joint, nsamples = 100))
dev.off()
#For correct
#Marginal effects plot: Plotted and saved
jpeg(file=correct_marginal_path_pool_joint)
print(marginal_effects(m_joint_correct))
dev.off()
#transition plot: Plotted and saved
jpeg(file=correct_trans_path_pool_joint)
print(plot(m_joint_correct))
dev.off()
#pp_check plot: Plotted and saved
jpeg(file=correct_pp_path_pool_joint)
print(pp_check(prior_check_correct_pool_joint, nsamples = 100))
dev.off()
#Saving estimates - runned till here!!
#ANSWER
#Saving random effect for individual
pooling_joint_ranef <- as.data.frame(ranef(m_joint_answer))[,1:2] #Intercept
pooling_joint_ranef <- cbind(pooling_individual_ranef, as.data.frame(ranef(m_joint_answer))[,5:6]) #Slope
#Adding fixed effects to random effect
pooling_joint_fixef <- as.data.frame(fixef(m_joint_answer)) #Making data frame of fixed effects
pooling_joint$Intercept_ranef_fixef_estimate_answer <- pooling_joint_ranef[, 1] + pooling_joint_fixef[1, 1] #Adding fixef of intercept to ranef of intercept
pooling_joint$Slope_ranef_fixef_estimate_answer <- pooling_joint_ranef[, 3] + pooling_joint_fixef[1, 2] #Adding fixef of slope to ranef of slope
#CORRECT
#Saving random effect for individual
pooling_individual_ranef <- as.data.frame(ranef(m_p_c))[,1:2] #Slope
#Adding fixed effects to random effect
pooling_individual_fixef <- as.data.frame(fixef(m_p_c)) #Making data frame of fixed effects
pooling_individual$Slope_ranef_fixef_estimate_correct <- pooling_individual_ranef[, 1] + pooling_individual_fixef[1, 1] #Adding fixef of slope to ranef of slope
#Adding rownames
pooling_joint <- cbind(Row.Names = rownames(pooling_individual_ranef), as.data.frame(pooling_individual))
write.csv(pooling_individual, file = "pooling_individual.csv")
```
#Calculating performance difference
```{r equality bias, ikke opdateret}
#create best and worst columns
Results$best <- ifelse(Results$Est_dif_blue_left > Results$Est_dif_blue_right, Results$Est_dif_blue_left, Results$Est_dif_blue_right )
Results$worst <- ifelse(Results$Est_dif_blue_left < Results$Est_dif_blue_right, Results$Est_dif_blue_left, Results$Est_dif_blue_right )
#create equality bias column
Results$eb <- Results$best/Results$worst
```
#Regression for difficulty
```{r regression for difficulty}
#regression for difficulty left
get_prior(Correct ~ dif_blue_abs, data = ldata)
prior = c(
prior(normal(0,2), class = "Intercept"), #How to motiavte this?
prior(normal(0,2), class = "sigma"), #Roughly on the same scale
prior(normal(0,2), class = "b"), #How to motiavte this?
prior(normal(0,1), class = "b", coef = "dif_blue_abs"))
#Making the model, individual
dif_reg <- brm(
Correct ~ dif_blue_abs + (1|unique),
data = ldata,
prior = prior,
family = "bernoulli", #As we had a binary outcome, we set this to "bernoulli"
seed = 123 # Adding a seed makes results reproducible.
)
summary(dif_reg_left)
marginal_effects(dif_reg_left)
#Making the model, joint
dif_reg_joint <- brm(
Correct_joint ~ dif_blue_abs + (1|GroupNumber),
data = ldata,
prior = prior,
family = "gaussian", #As we had a binary outcome, we set this to "bernoulli"
seed = 123 # Adding a seed makes results reproducible.
)
summary(dif_reg_joint)
marginal_effects(dif_reg_joint)
```
```{r spagetti plot}
summary(m_p)
plot(m_p, pars = "^b_")
plot(m_p)
```
- logistic regression individuals and joint - plot
- calculate equality bias (best/worst)
- calculate collaborative bias (joint/best)