-
Notifications
You must be signed in to change notification settings - Fork 1
/
Rex.v
88 lines (78 loc) · 1.09 KB
/
Rex.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
Require Import Reals.
Require Import PolTac.
Open Scope R_scope.
Theorem pols_test1 x y :
x < y -> x + x < y + x.
Proof.
intros.
pols.
auto.
Qed.
Theorem pols_test2 x y :
0 < y -> x < x + y.
Proof.
intros.
pols.
auto.
Qed.
Theorem pols_test3 x y :
0 < y * y ->
(x + y) * (x - y) < x * x.
Proof.
intros.
pols.
auto with real.
Qed.
Theorem pols_test4 x y :
x * x < y * y ->
(x + y) * (x + y) < 2 * (x * y + y * y).
Proof.
intros.
pols.
auto.
Qed.
Theorem pols_test5 x y z :
x * (z + 2) < y * (2 * x + 1) ->
x * (z + y + 2) < y * (3 * x + 1).
Proof.
intros.
pols.
auto.
Qed.
Theorem polf_test1 x y :
0 <= x -> 1 <= y -> x <= x * y.
Proof.
intros.
polf.
Qed.
Theorem polf_test2 x y :
0 < x -> x <= x * y -> 1 <= y.
Proof.
intros H1 H2.
hyp_polf H2.
Qed.
Theorem polr_test1 x y z :
x + z < y ->
x + y + z < 2 * y.
Proof.
intros H.
polr H.
pols.
auto.
pols.
auto with real.
Qed.
Theorem polr_test2 x y z t u :
t < 0 -> y = u ->
x + z < y ->
2 * y * t < x * t + t * u + z * t.
Proof.
intros H1 H2 H3.
polf.
polr H2; auto with real.
polr H3.
pols.
auto.
pols.
auto with real.
Qed.