-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_singletaskIRLNoisyObs_sortingMDP.py
772 lines (621 loc) · 23.8 KB
/
test_singletaskIRLNoisyObs_sortingMDP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
#!/usr/bin/env python
import sys
import Queue
import subprocess
import multiprocessing
import random
import cPickle as pickle
import os
import operator
import time
import numpy as np
import util.classes
# from patrol.model import boyd2MapParams, OGMap, PatrolModel
from sortingMDP.model import sortingModel,InspectAfterPicking,\
PlaceOnConveyor,PlaceInBin,Pick,ClaimNewOnion,InspectWithoutPicking,\
ClaimNextInList,sortingState
from sortingMDP.model import PlaceInBinClaimNextInList,sortingModelbyPSuresh,\
sortingModelbyPSuresh2,sortingModelbyPSuresh3,\
sortingModelbyPSuresh4,sortingModelbyPSuresh2WOPlaced,\
sortingModelbyPSuresh3multipleInit,sortingModelbyPSuresh4multipleInit_onlyPIP
from sortingMDP.reward import sortingReward2,\
sortingReward3,sortingReward4,sortingReward5,\
sortingReward6,sortingReward7,sortingReward7WPlaced
from mdp.solvers import *
import mdp.agent
from mdp.simulation import *
import re
home = os.environ['HOME']
def get_home():
global home
return home
##############################################################
##############################################################
dummy_states = []
dict_stateEnum = {}
dict_actEnum = {}
f_st_BIRLcode = open(get_home() + "/catkin_ws/src/BIRL_MLIRL_data/traj_states.log", "w")
f_st_BIRLcode.write("")
f_st_BIRLcode.close()
f_ac_BIRLcode = open(get_home() + "/catkin_ws/src/BIRL_MLIRL_data/traj_actions.log", "w")
f_ac_BIRLcode.write("")
f_ac_BIRLcode.close()
f_st_BIRLcode = open(get_home() + "/catkin_ws/src/BIRL_MLIRL_data/traj_states.log", "a")
f_ac_BIRLcode = open(get_home() + "/catkin_ws/src/BIRL_MLIRL_data/traj_actions.log", "a")
def printTrajectoriesWPredScores(trajs,range_scores):
outtraj = ""
for patroller in trajs:
for sap in patroller:
if (sap is not None):
s = sap[0]
outtraj += "[ "+str(s._onion_location)+", "\
+str(s._prediction)+", "+\
str(s._EE_location)+", "+\
str(s._listIDs_status)+"]:"
if sap[1].__class__.__name__ == "InspectAfterPicking":
act_str = "InspectAfterPicking"
elif sap[1].__class__.__name__ == "InspectWithoutPicking":
act_str = "InspectWithoutPicking"
elif sap[1].__class__.__name__ == "Pick":
act_str = "Pick"
elif sap[1].__class__.__name__ == "PlaceOnConveyor":
act_str = "PlaceOnConveyor"
elif sap[1].__class__.__name__ == "PlaceInBin":
act_str = "PlaceInBin"
elif sap[1].__class__.__name__ == "ClaimNewOnion":
act_str = "ClaimNewOnion"
elif sap[1].__class__.__name__ == "ClaimNextInList":
act_str = "ClaimNextInList"
elif sap[1].__class__.__name__ == "PlaceInBinClaimNextInList":
act_str = "PlaceInBinClaimNextInList"
else:
act_str = "ActionInvalid"
outtraj += act_str
else:
outtraj += "None"
outtraj += ":"+str(random.uniform(range_scores[0],range_scores[1]))+";\n"
outtraj += "ENDTRAJ\n"
return outtraj
def enumerateForBIRLsortingModel1(trajs):
patroller = trajs[0]
for sap in patroller:
if (sap is not None):
s = sap[0]
if sap[1].__class__.__name__ == "InspectAfterPicking":
test_act = InspectAfterPicking()
elif sap[1].__class__.__name__ == "InspectWithoutPicking":
test_act = InspectWithoutPicking()
elif sap[1].__class__.__name__ == "Pick":
test_act = Pick()
elif sap[1].__class__.__name__ == "PlaceOnConveyor":
test_act = PlaceOnConveyor()
elif sap[1].__class__.__name__ == "PlaceInBin":
test_act = PlaceInBin()
elif sap[1].__class__.__name__ == "ClaimNewOnion":
test_act = ClaimNewOnion()
elif sap[1].__class__.__name__ == "ClaimNextInList":
test_act = ClaimNextInList()
else:
print("can't enumerate ",sap[1])
# adding data for BIRL MLIRL
inds = dict_stateEnum.keys()[dict_stateEnum.values().index(s)]
f_st_BIRLcode.write(str(inds)+",")
inda = dict_actEnum.keys()[dict_actEnum.values().index(test_act)]
f_ac_BIRLcode.write(str(inda)+",")
else:
print("can't enumerate bcz sap is none ")
f_st_BIRLcode.write("\n")
f_ac_BIRLcode.write("\n")
return
def parse_sorting_policy(buf):
# stdout now needs to be parsed into a hash of state => action, which is then sent to mapagent
p = {}
stateactions = buf.split("\n")
for stateaction in stateactions:
temp = stateaction.split(" = ")
if len(temp) < 2: continue
state = temp[0]
action = temp[1]
state = state[1 : len(state) - 1]
pieces = state.split(",")
ss = sortingState(int(pieces[0]), int(pieces[1]), int(pieces[2]), int(pieces[3]))
if action == "InspectAfterPicking":
act = InspectAfterPicking()
elif action == "InspectWithoutPicking":
act = InspectWithoutPicking()
elif action == "Pick":
act = Pick()
elif action == "PlaceOnConveyor":
act = PlaceOnConveyor()
elif action == "PlaceInBin":
act = PlaceInBin()
elif action == "ClaimNewOnion":
act = ClaimNewOnion()
elif action == "ClaimNextInList":
act = ClaimNextInList()
elif action == "PlaceInBinClaimNextInList":
act = PlaceInBinClaimNextInList()
else:
print("Invalid input policy to parse_sorting_policy")
exit(0)
p[ss] = act
# print("parsed ss {} a {}".format(ss,act))
from mdp.agent import MapAgent
return MapAgent(p)
def parsePolicies(stdout, lineFoundWeights, lineFeatureExpec, \
learned_weights, num_Trajsofar, BatchIRLflag):
if stdout is None:
print("no stdout in parse policies")
stateactions = stdout.split("\n")
#print("\n parse Policies from contents:")
#print(stateactions)
counter = 0
p = {}
for stateaction in stateactions:
counter += 1
if stateaction == "ENDPOLICY":
break
temp = stateaction.split(" = ")
if len(temp) < 2: continue
state = temp[0]
action = temp[1]
state = state[1 : len(state) - 1]
pieces = state.split(",")
ss = sortingState(int(pieces[0]), int(pieces[1]), int(pieces[2]), int(pieces[3]))
# print((state,pieces,ss))
if action == "InspectAfterPicking":
act = InspectAfterPicking()
elif action == "InspectWithoutPicking":
act = InspectWithoutPicking()
elif action == "Pick":
act = Pick()
elif action == "PlaceOnConveyor":
act = PlaceOnConveyor()
elif action == "PlaceInBin":
act = PlaceInBin()
elif action == "ClaimNewOnion":
act = ClaimNewOnion()
elif action == "ClaimNextInList":
act = ClaimNextInList()
elif action == "PlaceInBinClaimNextInList":
act = PlaceInBinClaimNextInList()
else:
print("Invalid input policy to parse_sorting_policy")
exit(0)
p[ss] = act
returnval = [mdp.agent.MapAgent(p)]
sessionFinish = True
if len(stateactions[counter:])>0 and BatchIRLflag==False:
# this change is not reflected in updatewithalg
sessionFinish = True
# print("\n sessionFinish = True")#results after i2rl session at time: "+str(rospy.Time.now().to_sec()))
# file = open("/home/saurabh/patrolstudy/i2rl_troubleshooting/I2RLOPread_rosctrl.txt","r")
lineFoundWeights = stateactions[counter]
counter += 1
global reward_dim
# print(lineFoundWeights[1:-1].split(", "))
stripped_weights = lineFoundWeights[1:-1].split(", ")
learned_weights = [float(x) for x in stripped_weights]
# print("lineFoundWeights:"+lineFoundWeights)
lineFeatureExpec = stateactions[counter]
counter += 1
num_Trajsofar = int(stateactions[counter].split("\n")[0])
counter += 1
elif len(stateactions[counter:])==0:
lineFoundWeights = lineFoundWeights
lineFeatureExpec = lineFeatureExpec
num_Trajsofar = num_Trajsofar
sessionFinish = False
print("\n no results from i2rl session")
return (returnval, lineFoundWeights, lineFeatureExpec, \
learned_weights, num_Trajsofar, sessionFinish)
def computeLBA(fileTruePolicy,model,mapAgentLrndPolicy):
# read and compare policies using dictionaries
f = open(fileTruePolicy,"r")
truePol = {}
for stateaction in f:
temp = stateaction.strip().split(" = ")
if len(temp) < 2: continue
state = temp[0]
action = temp[1]
state = state[1 : len(state) - 1]
pieces = state.split(",")
ss = (int(pieces[0]), int(pieces[1]), int(pieces[2]), int(pieces[3]))
if action == "InspectAfterPicking":
act = InspectAfterPicking()
elif action == "InspectWithoutPicking":
act = InspectWithoutPicking()
elif action == "Pick":
act = Pick()
elif action == "PlaceOnConveyor":
act = PlaceOnConveyor()
elif action == "PlaceInBin":
act = PlaceInBin()
elif action == "ClaimNewOnion":
act = ClaimNewOnion()
elif action == "ClaimNextInList":
act = ClaimNextInList()
elif action == "Pickpip":
act = Pickpip()
elif action == "PlaceInBinpip":
act = PlaceInBinpip()
else:
print("Invalid input policy to parse_sorting_policy")
exit(0)
truePol[ss] = act
# print("number of keys for truePolicy ", len(truePol))
# print("number of keys in leaerned policy ",len(mapAgentLrndPolicy._policy))
# print("number of states in model ",len(model.S()))
f.close()
totalsuccess = 0
totalstates = 0
if (mapAgentLrndPolicy.__class__.__name__ == "MapAgent"):
for s in model.S():
if s in mapAgentLrndPolicy._policy:# check key existence
# print("number of actions in current state in learned policy",len(mapAgentLrndPolicy.actions(state).keys()))
action = mapAgentLrndPolicy.actions(s).keys()[0]
# action_name = action.__class__.__name__
# print("action_name ",action_name)
ss2 = (int(s._onion_location),int(s._prediction),\
int(s._EE_location),int(s._listIDs_status))
if ss2 in truePol.keys():
totalstates += 1
if (truePol[ss2] == action):
# print("found a matching action")
totalsuccess += 1
# else:
# print("for state {}, action {} neq action {} ".format(ss2,action,truePol[ss2]))
print("totalstates, totalsuccess: "+str(totalstates)+", "+str(totalsuccess))
if float(totalstates) == 0:
print("Error: states in two policies are different")
return 0
lba=float(totalsuccess) / float(totalstates)
return lba
def saveDataForBaseline():
#############################################################
# BIRL input data for checking if problem is method
#############################################################
sortingMDP = model
for s in sortingMDP.S():
dummy_states.append(s)
dummy_states.append(sortingState(-1,-1,-1,-1))
ind = 0
for s in dummy_states:
ind = ind +1
dict_stateEnum[ind] = s
print("dict_stateEnum \n",dict_stateEnum)
acts = [InspectAfterPicking(),PlaceOnConveyor(),PlaceInBin(),\
Pick(),ClaimNewOnion(),InspectWithoutPicking(),ClaimNextInList()]
ind = 0
for a in acts:
ind = ind +1
dict_actEnum[ind] = a
# record first trajectory in data for single task BIRL
enumerateForBIRLsortingModel1(traj)
f_st_BIRLcode.close()
f_ac_BIRLcode.close()
f_TM_BIRLcode = open(get_home() + "/catkin_ws/src/BIRL_MLIRL_data/transition_matrix.txt", "w")
f_TM_BIRLcode.write("")
f_TM_BIRLcode.close()
tuple_res = sortingMDP.generate_matrix(dict_stateEnum,dict_actEnum)
dict_tr = tuple_res[0]
f_TM_BIRLcode = open(get_home() + "/catkin_ws/src/BIRL_MLIRL_data/transition_matrix.txt", "a")
for ind1 in range(1,len(dict_actEnum)+1):
acArray2d = np.empty((len(dict_stateEnum),len(dict_stateEnum)))
for ind2 in range(1,len(dict_stateEnum)+1):
for ind3 in range(1,len(dict_stateEnum)+1):
acArray2d[ind3-1][ind2-1] = dict_tr[ind1][ind3][ind2]
for ind3 in range(1,len(dict_stateEnum)+1):
for ind2 in range(1,len(dict_stateEnum)+1):
f_TM_BIRLcode.write(str(acArray2d[ind3-1][ind2-1])+",")
f_TM_BIRLcode.write("\n")
f_TM_BIRLcode.write("\n")
f_TM_BIRLcode.close()
f_Phis_BIRLcode = open(get_home() + "/catkin_ws/src/BIRL_MLIRL_data/features_matrix.txt", "w")
f_Phis_BIRLcode.write("")
f_Phis_BIRLcode.close()
f_Phis_BIRLcode = open(get_home() + "/catkin_ws/src/BIRL_MLIRL_data/features_matrix.txt", "a")
for inda in range(1,len(dict_actEnum)+1):
a = dict_actEnum[inda]
for inds in range(1,len(dict_stateEnum)+1):
s = dict_stateEnum[inds]
arraysPhis = sortingReward.features(s,a)
for indk in range(1,len(arraysPhis)+1):
f_Phis_BIRLcode.write(str(arraysPhis[indk-1])+",")
f_Phis_BIRLcode.write("\n")
f_Phis_BIRLcode.write("\n")
f_Phis_BIRLcode.close()
wts_experts_array = np.empty((sortingReward._dim,len(np.unique(true_assignments))))
j = 0
for wt_ind in np.unique(true_assignments):
for i in range(0,wts_experts_array.shape[0]):
wts_experts_array[i][j] = List_TrueWeights[wt_ind][i]
j += 1
f_wts_BIRLcode = open(get_home() + "/catkin_ws/src/BIRL_MLIRL_data/weights_experts.log", "w")
f_wts_BIRLcode.write("")
f_wts_BIRLcode.close()
f_wts_BIRLcode = open(get_home() + "/catkin_ws/src/BIRL_MLIRL_data/weights_experts.log", "a")
for i in range(0,wts_experts_array.shape[0]):
for e in range(0,wts_experts_array.shape[1]):
f_wts_BIRLcode.write(str(wts_experts_array[i][e])+",")
f_wts_BIRLcode.write("\n")
f_wts_BIRLcode.close()
#############################################################
#############################################################
##############################################################
###############################################################
if __name__ == "__main__":
# D code for single task IRL uses 0.95 success rate of transitions
p_fail = 0.05
m = "sorting"
# model = sortingModel(p_fail)
# model = sortingModel2(p_fail)
# model = sortingModelbyPSuresh(p_fail)
# model = sortingModelbyPSuresh2(p_fail)
# model = sortingModelbyPSuresh3(p_fail)
# model = sortingModelbyPSuresh4(p_fail)
# model = sortingModelbyPSuresh2WOPlaced(p_fail)
# model = sortingModelbyPSuresh3multipleInit(p_fail)
model = sortingModelbyPSuresh4multipleInit_onlyPIP(p_fail)
# print(sortingModelbyPSuresh._p_fail)
model.gamma = 0.99
# sortingReward = sortingReward2(8)
# sortingReward = sortingReward3(10)
# sortingReward = sortingReward4(10)
# sortingReward = sortingReward5(8)
# sortingReward = sortingReward6(11)
# sortingReward = sortingReward7WPlaced(11)
sortingReward = sortingReward7(11)
reward_dim = sortingReward._dim
print("reward_dim ",reward_dim)
model.reward_function = sortingReward
params_manualTuning_rolling_reward3 = [0.15, -0.08, -0.11, 0.3, -0.3, -0.15, 0.6, -0.15, 0.6, -0.2]
params_manualTuning_rolling_reward4 = [0.0, 0.6, 0.0, 0.95, 0.8, 0.0, 0.9, 0.15, 0.9, 0.4]
params_manualTuning_pickinspectplace_reward3 = [ 0.10, 0.0, 0.0, 0.22, -0.12, 0.44, 0.0, -0.12, 0.0, -0.2]
params_manualTuning_pickinspectplace_reward4 = [ 0.10, 0.0, 0.0, 0.22, 0.12, 0.44, 0.0, 0.12, 0.0, 0.2]
'''
reward 4
// good placed on belt
// not placing bad on belt
// not placing good in bin
// bad placed in bin
// not staying still
// classify after picking
// create the list
// not picking a placed one
// classify without picking
// not placing uninspected in bin
'''
# params_manualTuning_pickinspectplace_reward5 =[1,-1,-1,1,-0.2,1,0,1]
params_rolling_reward5 =[0,4,0,4,0.2,0,8,0]
params_pickinspectplace_reward5 =[2,1,2,1,0.2,1,0,4]
params_rolling_reward6 =[0,4,0,4,0.2,0,8,0,8,4,0]
params_pickinspectplace_reward6 =[2,1,2,1,0.2,1,0,4,0,0,4]
params_staystill_reward6 = [ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0]
params_pickinspectplace_reward7woplacedmixedinit =[2,1,2,1,0.2,0.1,0,4,0,0,4]
#############################################################
# Needed for synchornizing BIRL input data
#############################################################
List_TrueWeights = []
# index 0 for pick-inspect-place
params = params_pickinspectplace_reward7woplacedmixedinit
norm_params = [float(i)/sum(np.absolute(params)) for i in params]
List_TrueWeights.append(norm_params)
# index 1 for roll-pick-place
params = params_rolling_reward6
norm_params = [float(i)/sum(np.absolute(params)) for i in params]
List_TrueWeights.append(norm_params)
# index 2 for stay-still
params = params_staystill_reward6
norm_params = [float(i)/sum(np.absolute(params)) for i in params]
List_TrueWeights.append(norm_params)
#############################################################
# demonstration had two runs with one trajectory for each run
true_assignments = [0,1,2]
# pick-inspect-place
params = List_TrueWeights[true_assignments[0]]
# roll-pick-place
# params = List_TrueWeights[true_assignments[1]]
norm_params = [float(i)/sum(np.absolute(params)) for i in params]
initial = util.classes.NumMap()
# ALWAYS START FROM 0,2,0,2
# pick-inspect-place
# s = sortingState(0,2,0,2)
# roll-pick-place
# s = sortingState(0,2,0,0)
# initial[s] = 1.0
# for multiple starting states
count = 0
for s in model.S():
# initial[s] = 1.0
# if s._onion_location == 0 and s._prediction == 2 and s._listIDs_status == 0:
if s._onion_location == 0 and s._listIDs_status == 0:
initial[s] = 1.0
# count+=1
print("number of initial states ", count)
initial = initial.normalize()
#############################################################
#############################################################
# norm_params = [float(i)/sum(np.absolute(params)) for i in params]
args = [get_home() + "/catkin_ws/devel/bin/solveSortingMDP", ]
p = subprocess.Popen(args, stdin =subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
stdin = str(norm_params)
print("input to solveSortingMDP ",stdin)
(stdout, stderr) = p.communicate(stdin)
# print("output to solveSortingMDP ",stdout)
policy = parse_sorting_policy(stdout)
p.stdin.close()
p.stdout.close()
p.stderr.close()
n_samples = 2
# for each of two runs of irl, t_max will be divided into length_subtrajectory long trajs
# t_max = 200
# t_max = 300
# t_max = 400
# t_max = 2500
# length_subtrajectory = 2
# length_subtrajectory = 4
# length_subtrajectory = 8
# length_subtrajectory = 10
# length_subtrajectory = 15
# length_subtrajectory = 25
# length_subtrajectory = 30
# length_subtrajectory = 35
length_subtrajectory = 40
# length_subtrajectory = 50
# length_subtrajectory = 80
# t_max = length_subtrajectory*1
t_max = length_subtrajectory*3
sample_learnedPolicy = 0
#for I2RL
num_sessions = 1
num_Trajsofar = 0
learned_mu_E=[0.0]*reward_dim
learned_weights=[0.0]*reward_dim
# parameters for solver
restart_attempts = 3
moving_window_length_muE = 3
# threshold for convergence of gibbs sampling for robust-irl
# by Shervin
# 0.025 not giving expected trend
conv_threshold_gibbs = 0.015
# conv_threshold_gibbs = 0.01
# which kind of sampling method is being used?
use_ImpSampling = 0
if (use_ImpSampling == 1):
# imp sampling, for prediciton score 0.85-0.99 and only PIP
conv_threshold_stddev_diff_moving_wdw = 0.0005
else:
# gibbs sampling, for prediciton score 0.85-0.99 and only PIP
# which value shows LBA monotonically decreasing with
# confidence?
# 0.01 No trend
# 0.005 No trend
# However, changing conv_threshold_gibbs made a difference
conv_threshold_stddev_diff_moving_wdw = 0.005
# ranges of noise in observations
range_pred_scores1 = [1.0,1.0]
range_pred_scores2 = [0.90,0.99]
range_pred_scores3 = [0.80,0.90]
range_pred_scores4 = [0.70,0.80]
range_pred_scores5 = [0.60,0.70]
ranges_pred_scores = [range_pred_scores1, range_pred_scores2, range_pred_scores3, range_pred_scores4, range_pred_scores5]
print("writing result of calls to noisyObsRobustSamplingMeirl to file catkin_ws/src/sorting_patrol_MDP_irl/noisyObsRobustSamplingMeirl_LBA_data.csv")
# output LBA to file
f_input_IRL = open(get_home() +'/catkin_ws/src/sorting_patrol_MDP_irl/noisyObsRobustSamplingMeirl_LBA_data.csv', "w")
f_input_IRL.write("")
f_input_IRL.close()
f_rec = open(get_home()+'/catkin_ws/src/sorting_patrol_MDP_irl/noisyObsRobustSamplingMeirl_LBA_data.csv','a')
csvstring = "\n"
for range_sc in ranges_pred_scores:
for sess in range(num_sessions):
# store only trajectory data
f_trajs = open(get_home() + "/Downloads/Dataset.txt", "w")
f_trajs.write("")
f_trajs.close()
f_trajs = open(get_home() + "/Downloads/Dataset.txt", "a")
traj = []
print( "demonstration logging")
for i in range(n_samples):
traj_list = sample_traj(model, t_max, initial, policy)
traj.append(traj_list)
# for (s,a,s_p) in traj_list:
# print((s,a))
# print("\n")
# dataest for testing ros node
range_p_scores = [0.80,0.95]
for (s,a,s_p) in traj_list:
print((s,a))
f_trajs.write("["+str(s._onion_location)+","\
+str(s._prediction)+","\
+str(s._EE_location)+","\
+str(s._listIDs_status)+"];")
f_trajs.write(str(a)+";")
f_trajs.write(str(random.uniform(range_p_scores[0],range_p_scores[1])))
f_trajs.write("\n")
f_trajs.write("ENDTRAJ\n")
f_trajs.close()
exit(0)
outtraj = None
args = [get_home() +"/catkin_ws/devel/bin/"+ "noisyObsRobustSamplingMeirl", ]
p = subprocess.Popen(args, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
outtraj = ""
outtraj += "sorting" + "\n"
# algorithm = "MAXENTZAPPROX"
algorithm = "MAXENTZAPPROXNOISYOBS"
outtraj += algorithm+"\n"
# add prediction scores
outtraj += printTrajectoriesWPredScores(traj,range_sc)
# specific to sorting mdp
outtraj += str(norm_params)+"\n"
outtraj += str(length_subtrajectory)+"\n"
outtraj += str(conv_threshold_stddev_diff_moving_wdw)+"\n"\
+str(restart_attempts)+"\n"+str(moving_window_length_muE)+"\n"\
+str(use_ImpSampling)+"\n"+str(conv_threshold_gibbs)+"\n"
if num_Trajsofar == 0:
for j in range(reward_dim):
learned_weights[j] = random.uniform(0.0,.99)
lineFoundWeights = str(learned_weights) #+"\n"
# create initial feature expectations
for j in range(reward_dim):
learned_mu_E[j]=0.0
lineFeatureExpec = str(learned_mu_E) #+"\n"
if not not lineFoundWeights and lineFoundWeights[-1] != '\n':
lineFoundWeights = lineFoundWeights + "\n"
if not not lineFeatureExpec and lineFeatureExpec[-1] != '\n':
lineFeatureExpec = lineFeatureExpec + "\n"
outtraj += lineFoundWeights+lineFeatureExpec+ str(num_Trajsofar)+"\n"
# input data to file
f_input_IRL = open(get_home() + "/catkin_ws/src/sorting_patrol_MDP_irl/data_singleTaskIRLNoisyObs_sorting.log", "w")
f_input_IRL.write("")
f_input_IRL.close()
f_input_IRL = open(get_home() + "/catkin_ws/src/sorting_patrol_MDP_irl/data_singleTaskIRLNoisyObs_sorting.log", "a")
f_input_IRL.write(outtraj)
f_input_IRL.close()
# print(outtraj)
(stdout, stderr) = p.communicate(outtraj)
print("output of meirl ")
# print(stdout)
# exit(0)
print("session {} finished".format(sess))
p.stdin.close()
p.stdout.close()
p.stderr.close()
# print("parsing policies ")
emphasizedOutput = re.findall('BEGPARSING\n(.[\s\S]+?)ENDPARSING', stdout)[0]
# print(emphasizedOutput)
BatchIRLflag = False
normedRelDiff = 0
(policies, lineFoundWeights, lineFeatureExpec, learned_weights, \
num_Trajsofar, sessionFinish) \
= parsePolicies(emphasizedOutput, lineFoundWeights, lineFeatureExpec, learned_weights, \
num_Trajsofar, BatchIRLflag)
num_Trajsofar += t_max/length_subtrajectory
# print("num_Trajsofar, learned_weights ",(num_Trajsofar, learned_weights))
# LBA should be read after last session
# print("re.findall('LBA(.[\s\S]+?)ENDLBA', stdout) ",re.findall('LBA(.[\s\S]+?)ENDLBA', stdout))
LBA = re.findall('LBA(.[\s\S]+?)ENDLBA', stdout)[0]
print("LBA:",LBA)
hatphi_Diff_wrt_wonoise = re.findall('DIFF1(.[\s\S]+?)ENDDIFF1', stdout)[0]
print("LBA:",LBA)
hatphi_Diff_wrt_scores1 = re.findall('DIFF2(.[\s\S]+?)ENDDIFF2', stdout)[0]
print("LBA:",LBA)
################################ Simulating learned policy #################################
policies = policies[0:2]
# print("number of policies learned ",len(policies))
# exit(0)
if sample_learnedPolicy == 1:
n_samples = 4
t_max = 10
for i in range(len(policies)):
policy = policies[i]
print("trajs from learned policy number ",i)
print("\n")
for j in range(n_samples):
traj_list = sample_traj(model, t_max, initial, policy)
for (s,a,s_p) in traj_list:
print((s,a))
print("\n")
csvstring += str(LBA)+","
f_rec.write(csvstring)
f_rec.close()